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Abstract

Background: Improving efficiency of disease diagnosis based on phenotype ontology is a critical yet challenging
research area. Recently, Human Phenotype Ontology (HPO)-based semantic similarity has been affectively and widely
used to identify causative genes and diseases. However, current phenotype similarity measurements just consider the
annotations and hierarchy structure of HPO, neglecting the definition description of phenotype terms.

Results: In this paper, we propose a novel phenotype similarity measurement, termed as DisPheno, which adequately
incorporates the definition of phenotype terms in addition to HPO structure and annotations to measure the similarity
between phenotype terms. DisPheno also integrates phenotype term associations into phenotype-set similarity
measurement using gene and disease annotations of phenotype terms.

Conclusions: Compared with five existing state-of-the-art methods, DisPheno shows great performance in
HPO-based phenotype semantic similarity measurement and improves the efficiency of disease identification,
especially on noisy patients dataset.
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Background
With the high-speed development of next generation
sequencing (NGS) techniques, large-scale biological and
medical data is generated exponentially, which greatly
contributes to Mendelian disease and cancer diagnosis [1–3].
However, it is still difficult to make accurate clinic diag-
nosis solely based on sequencing technologies, because of
the complex and incomprehensible relationships between
genetic variants and clinical phenotypes [4].

Some observable features of patients, such as behaviors
and biomedical properties, are defined as patient pheno-
types, which are usually determined by both genetic and
environmental factors [5]. Currently, patient phenotypes
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are widely used to improve efficiency of disease diagno-
sis by analysing the complex relationships between clinic
phenotypes and phenotypes of known diseases.

Human Phenotype Ontology (HPO) is a widely used
ontology resource, which provides a standardized vocab-
ulary of phenotypic abnormalities encountered in human
disease [6]. HPO contains multiple types of information
of phenotype, such as frequency modifier and defini-
tions of phenotype terms. Besides, phenotype terms in
HPO are organized as a directed acyclic graph (DAG) to
describe the phenotypic characteristics and their relation-
ships (An example is illustrated in Fig. 1). Based on HPO,
researchers start to calculate phenotype similarity, which
recently has been widely utilized to improve efficiency of
disease diagnosis, and phenotype semantic similarity has
become a rising research area [7, 8].

In phenotype semantic similarity area, previous
researchers have proposed various HPO-based similarity
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Fig. 1 An illustrative example of Human Phenotype Ontology (HPO). An example of Phenotypic abnormality (HP:0000118) forming a directed
acyclic graph (DAG), in which nodes represent phenotype terms and edges represent “subclass of ” relationships between phenotype terms

measurements. Most of existing semantic similarity mea-
surements are based on Information Content (IC), such
as Phenomizer [9], OWLSim [10] and PhenomeNet [11].
In detail, Phenomizer measures any two phenotype terms
similarity based information content of phenotype ontol-
ogy, which is similar as Masino et al. [12]. PhenomeNet
and OWLSim extend simGIC [13] to calculate phenotype
similarity of two phenotype sets. However, IC-based simi-
larity measurements ignore the associated relationships of
phenotype terms. Besides IC-based measurements, most
existing measurements are similar to GO-based similarity
measurements and neglect the unique topological struc-
ture of HPO [14–22]. And the main difference between
HPO and GO is the biological knowledge representing by
their structure. In the low-level of GO structure, sibling
terms are often similar to each other. In contrast, sibling
terms in the low-level of HPO structure are hard to prove
that they have associations at the gene level or share
any disease symptoms. For instance, phenotype terms
“Split hand (HP:0001171)” and “Areflexia of upper limbs
(HP:0012046)” are two leaf terms in HPO, but between
them, there is no known gene-level associations nor
shared disease symptoms [23].

Thus, it is essential to propose a novel and unique
HPO-based semantic similarity measurement which
designs for considering topological information of HPO.

We designed a new path-constrained IC-based phe-
notype term semantic similarity measurement, termed
as PhenoSim, which considers the unique DAG struc-
ture of HPO [23]. In addition, some practical online
or offline tools have been developed for biological
researchers, including HPOSim [24] and PhenoSimWeb
[25]. HPOSim provides an offline R package, which imple-
ments seven common ontology-based similarity measure-
ments, including Jiang [26], Lin [27], Wang [28] and
Schlicker [29]. PhenoSimWeb is an easy-to-use online
application which implements five phenotype measure-
ments and provides an intuitive visualization interface.

Although above methods are widely used to calculate
phenotype semantic similarity, none of them make the
best of phenotype ontology information, such as def-
inition description of phenotype term and phenotype
annotation information. PhenoSim proposed a phenotype
similarity measurement based on topological structure
of HPO, but it neglects text description and associa-
tion information of phenotype term. Current HPO-based
methods adopt gene or disease annotations to repre-
sent information content of phenotype term. However,
this method cannot describe phenotype term fully and
accurately, since many annotations associated with a phe-
notype are still unknown [30–32]. Therefore, it is essential
and necessary to explore a novel phenotype similarity
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measurement that make the best of phenotype ontology
information, such as hierarchical structure, term annota-
tion and text description of phenotype.

In this paper, we propose a novel phenotype similarity
measurement, named DisPheno, which integrates hier-
archy structure and phenotype term definition of HPO.
Compared with existing methods, the main contributions
of our work can be summarized as:

• To the best of our knowledge, DisPheno is the first
HPO-phenotype similarity measurement integrating
term annotation, hierarchical structure and text
description.

• DisPheno applies Point-wise Mutual Information to
calculate phenotype annotations and integrates into
phenotype-set similarity measurement.

• The evaluation results show that DisPheno
outperforms some state-of-the-art approaches.

Methods
In order to improve the performance of identifying
disease-related phenotypes, we propose a novel pheno-
type similarity measurement, termed as DisPheno, which

is a optimized method of a path-constrained information
content-based similarity measurement. DisPheno mainly
contains four steps. First, it annotates phenotype ontol-
ogy information content using both genes and diseases.
Second, it reconstructs topological structure of pheno-
type term using TF-IDF method [33]. Third, it computes
semantic similarity between two phenotype term ti and
tj considering information content(IC), distance between
terms and DAG structure. Finally, it computes phenotype
term associations using Point-wise Mutual Information
(PMI) method [34] and calculates phenotype set similar-
ity. The framework of DisPheno is shown in Fig. 2. and the
detailed steps will be introduced as follows.

Step 1. Annotating phenotype ontology information
content
Most of current phenotype similarity measurement are
based on information content(IC), and the types of anno-
tating phenotype term mainly contains gene annotation
and disease annotation. Existing phenotype similarity
measurement are annotated using gene or disease, and
our method integrates these two types of annotations. In
annotating part, we use a weighted coefficient w to adjust

Fig. 2 The workflow of DisPheno. It mainly contains four parts: a Annotating phenotype ontology information content using both gene annotation
and disease annotation; b Reconstructing topological structure of phenotype term by calculating phenotype term definition similarity using TF-IDF;
c Measuring phenotype semantic similarity based on HPO by integrating term definition-similarity; d Calculating phenotype term association and
set similarity by measuring phenotype term associations using Point-wise Mutual Information(PMI)
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the ratio of two types of annotations. The IC of phenotype
term t can be described as follows:

IC(t) = w ∗ ICgene + (1 − w) ∗ ICdisease

ICgene(t) = ln
(

G
Gt

)
ICdisease(t) = ln

(
D
Dt

)

where ICgene(t) represents the information content of
phenotype term t annotated by genes, G and Gt repre-
sent the size of genes annotated to the root and term
t respectively (ICdisease(t) is similar to gene annotation).
Finally, we can comprehensively integrate the relation-
ships between phenotypes and genes / diseases into the
information content of phenotype terms.

Step 2. Reconstructing topological structure of phenotype
term
Human Phenotype Ontology (HPO) provides a directed
acyclic graph (DAG) to describe the phenotype term and
associations. However, the edge of DAG has no weight
and just indicate the hierarchical relationship. To further
describe the relationship between phenotype terms, we
try to turn original DAG into a weighted directed acyclic
graph (WDAG). In our model, we calculate the cosine
similarity between the definitions of phenotype terms
using TF-IDF method and try to add weights for edges of
original DAG.

To calculate the phenotype term similarity, we need to
convert the term definition into vector by TF-IDF firstly.
TF-IDF is short for term frequency-inverse document fre-
quency, which is often used in data mining and informa-
tion retrieval to measure the importance of a document in
a collection or corpus [33].

Given a phenotype term definition t = {p1, p2, ..., pn},
pi represents a specify word, and the term frequency of
pi is tf (pi, t) = ni/|t|, where ni represents the times that
word pi occurs in phenotype term definition t, and |t| is
the number of words in t. And the inverse document fre-
quency of word pi is idf (pi, T) = log |T |

|{t∈T :pi∈t}| , where |T |
is the total number of phenotype term in the HPO corpus
and |{t ∈ T : pi ∈ t}| is the number of phenotype term
where the word pi appears. Thus, the Term frequency-
Inverse document frequency(TF-IDF) can be calculated
as:

TF − IDF(pi, t, T) = TF(pi, t) ∗ IDF(pi, T)

After translating the phenotype term definitions into
TF-IDF vectors by calculating the word TF-IDF scores, we
can calculate the term similarity between pair-wise phe-
notype term using cosine similarity based on the TF-IDF
vectors. Then, we can obtain a phenotype term similar-
ity matrix S ∈ Rn∗n, where n is the number of total
phenotype terms. Finally, we add the phenotype term
similarity into the DAG and we can reconstruct the un-
weighted directed acyclic graph into a weighted directed

acyclic graph (WDAG). And the reconstructed WDAG
will be used in the process of calculating phenotype term
similarity.

Step 3. Measuring phenotype semantic similarity
Most phenotype similarity measurements are based on
information content, they just consider the information
content of most informative common ancestor or pheno-
type terms. They neglect the effects of hierarchy structure
and text description of phenotype terms.

In our previous research, PhenoSim has proposed a
path-constrained information content-based phenotype
similarity measurement. The core idea is to consider the
structural accessibility of phenotype terms. In detail, if
there is a directed path between any two phenotype terms
ti and tj in the hierarchy structure of HPO, we consider
that these two terms are highly similar to each other and
“reachable”. Otherwise, these two phenotype terms are
“unreachable” in the DAG structure of HPO.

Based on this measurement, we propose a novel
method, termed as DisPheno, which considering the dis-
tance between term ti and tj and the pathway on the
weighted directed acyclic graph. Thus, we define a novel
phenotype-based similarity measurement as:

sim(ti, tj) =
{

WIC(tMICA) ∗
(

1 − dist(ti,tj)
mostDepth

)
reachable

0 otherwise

where WIC(tMICA) = min (IC(ti), IC(tj)) ∗ W (ti, tj),
(mostDepth − dist(ti, tj))/mostDepth implies the influ-
ences of distance between ti and tj, and W (ti, tj) is the
weight product from ti to tj among weighted directed
acyclic graph of HPO. Specifically, mostDepth describes
the longest path in the hierarchy structure of HPO, or the
maximum number of edges that leaf node reaches the root
node.

Step 4. Computing phenotype term association and set
similarity
Before calculating the phenotype set similarity, we need
to measure the association among all phenotype terms.
Current phenotype set similarity measurements all adopt
the average value of maximum phenotype term similar-
ity between phenotype term and phenotype set as the
phenotype set similarity. In our model, we introduce
the phenotype association relationships and use Point-
wise Mutual Information(PMI) to compute the phenotype
term associations.

Assuming that if two term ti and tj belongs to same
causative gene (or disease) in the gene-to-phenotype (or
disease-to-phenotype) association file, we hold that term
ti and tj are associated. The pair-wise association between
phenotype terms can be calculated as:
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PMI(ti, tj) = log
( p(ti, tj)

p(ti) ∗ p(tj)

)

where p(ti, tj) is the probability that term ti and tj appear
on the same gene or disease annotation set simultane-
ously, p(ti) and p(tj) are total probability of term ti and tj
in the phenotype annotation set.

Given a patient and a candidate gene(or disease), the
corresponding phenotype sets are Tp and Tc respectively.
The phenotype set similarity between specific patient and
candidate genes (or diseases) are the average value of
pair-wise phenotype terms similarities between Tp and Tc:

Simset(Tp → Tc) = 1
Np

∑
ti∈Tp

max
tj∈Tc

(sim(ti, tj) ∗ PMI(ti, tj))

Simset(Tc → Tp) = 1
Nc

∑
tj∈Tc

max
ti∈Tp

(sim(tj, ti) ∗ PMI(tj, ti))

where phenotype similarity sim(ti, tj) is measured in pre-
vious step and N described the number of phenotype
terms in set T. Due to the similarity score relies on the
order of the phenotype-set and the above two equation
are asymmetric, we use the following equation to elimi-
nate the asymmetry affects. The symmetrical phenotype
similarity measurement are described as:

Simsym(Tp, Tc) = 1
2
(Simset(Tp → Tc)+Simset(Tc → Tp))

Where Simsym is the average value of set similarities of
two phenotype sets with different order. Phenotype term
and set similarity measurement are the key of identify-
ing true disease from candidate disease set. By modifying
existing HPO-based similarity, we can further improve the
efficiency of disease diagnosis.

Results
Data preparation
The experimental datasets were downloaded from Human
Phenotype Ontology (HPO) official website (https://hpo.
jax.org/), which contain 10,838 phenotype terms, 99,186
disease-to-phenotype annotations and 61,784 gene-to-
phenotype annotations.

To evaluate the performance of our method, we used the
patients that simulated in our previous work PhenoSim,
which mainly contains “patients with known causative
genes” and “patients with known diseases” two parts.
Taking into account the clinical situation, we generated
dataset with noise phenotype terms, named noisy dataset,
and imprecision phenotype terms, named imprecision
dataset. The optimal and noisy datasets used in this paper
are same as our previous paper [35]. The details of simu-
lating patients are described as follows.

Optimal dataset Each simulated patient was assigned
one selected disease, and then we randomly added phe-
notype terms that selected disease associated with into

this stimulated patient. In detail, if the randomly gener-
ated number was not greater than the known penetrance
of the phenotype that disease associated with, this pheno-
type will be assigned to this simulated patient. The process
was repeated for 100 times, then we obtained final optimal
simulated patients.

Noisy dataset The noisy dataset is an extension of
optimal, which considers the real clinic dataset. Before
simulating noisy dataset, we firstly generated a noisy
phenotype-set that much larger than the number of opti-
mal phenotypes for every selected disease. The noise
phenotype can be defined as the term which is not asso-
ciated to this disease. After generating noisy phenotype-
set, half number of noisy phenotype terms are selected
and added into the phenotype set of simulated patients.
Finally, we repeated this process for optimal patients and
we generated the noisy simulated patients.

Noisy & Imprecision dataset Besides noisy pheno-
types, clinical datasets usually contain imprecision phe-
notypes which attributes to the limitation of medical
technology. The imprecision data is described as a kind of
phenotype terms that one of their ancestors is associated
with the disease d instead of the explicit phenotype term
itself. In this noisy & imprecision dataset, we randomly
selected half of the optimal terms and replaced them with
one of their ancestors. Then we added noisy phenotype
terms into the imprecision dataset, and the number of
noise terms is half of the imprecision dataset. Finally, opti-
mal, noisy and noisy & imprecision data all account for
one-third of the whole dataset.

Performance evaluation on optimal dataset
We utilized the same evaluation criterion with PhenoSim
to validate the prediction performance of DisPheno [12].
The main idea is to rank the candidate diseases of each
simulated patient. We calculated the phenotype similar-
ity value between the patient and each candidate diseases
using DisPheno, then ranked all the candidate diseases in
descending order by their similarity values. Higher the
true disease’s rank is, the better the algorithm’s perfor-
mance. Finally, we compared DisPheno with other five
existing state-of-the-art measures on all the simulated
datasets.

“Optimal patients with known causative gene”
dataset contains 3300 simulated patients and each patient
corresponds to one causative gene. We tested DisPheno
and other five methods on this optimal dataset and com-
pared the rank of true disease. Specifically, there is map-
ping relationship between causative genes and diseases.
Because the HPO-based similarity measurements are usu-
ally used on disease diagnosis, we ranked the candidate
diseases for each simulated patient instead of causative
genes. In the cumulative rank distribution figure, we
can find that DisPheno performed much better than the

https://hpo.jax.org/
https://hpo.jax.org/
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other methods (Fig. 3). 28.78% of true candidate diseases
rank first using DisPheno which is the highest percentage
among all methods. The percentage of rank among top-3
using DisPheno is 49.86%, while the ratio of other meth-
ods are 42.94% (PhenoSim), 35.69% (Masino), 28.55%
(Lin), 30.69% (Jiang) and 28.42% (Schlicker) respectively.
In addition, 60.43% candidate diseases rank among top-
5 using DisPheno and it is 10.98% higher than PhenoSim
(49.45%) which is the second best method.

“Optimal patients with known disease” dataset con-
tains 24,000 simulated patients and each patient corre-
sponds to one disease. We tested the performance of all six
approaches on this optimal dataset (see Table 1). Although
the percentage of top-1 using DisPheno (83.12%) is less
than the ratio of Schlicker (96.36%), 99.10% of candidate
diseases rank among top-3 which is the highest compared
with other methods. Although top-1 percentage is not
highest, DisPheno shows great performance on disease
identification. In the clinical cancer diagnosis or disease
prediction, it usually provides scientists with several top
candidates instead of the single highest one.

In the optimal datasets, DisPheno performs better than
other five methods. And it also shows great performance
and latent capacity on predicting disease and disease
diagnosis. Considering that clinical phenotype set often

contains lots of noise data, we further validate the perfor-
mance of DisPheno on the simulated patient with noisy
phenotype terms.

Performance evaluation on noisy dataset
“Noisy patients with known causative gene” dataset
contains noisy phenotypes which are not annotated phe-
notype terms of the causative gene. We applied DisPheno
and other five measures on the noisy dataset. Our
method performed the best in all the six measurements
(Fig. 4). The ratio of true diseases rank among top-5
using DisPheno reaches the highest (57.38%), which is
11.20% higher than the second highest method PhenoSim
(46.18%). The percentage of other methods perform on
this dataset are 36.85% (Masino), 10.67% (Lin), 6.80%
(Jiang) and 14.61% (Schlicker). DisPheno shows great per-
formance on noisy patient with known causative gene, it
indicates good application prospect on clinical diagnosis.

“Noisy patients with known disease” dataset contains
noisy phenotypes which are not annotated phenotype
terms of the disease. We applied DisPheno and other five
approaches on the noisy dataset, and our method per-
formed the best in all the six measurements (Fig. 5).
On the noisy patients with known diseases, the perfor-
mance of DisPheno is far superior than the other five

Fig. 3 Cumulative rank distribution of optimal patient dataset with the known causative gene. The x-axis is the rank threshold and the y-axis is the
cumulative probability of true disease rank
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Table 1 The percentage of cumulative rank distribution

Method Top-1 Top-3 Top-5 Top-10

DisPheno 83.12% 99.10% 99.71% 99.87%

PhenoSim 79.50% 98.62% 99.45% 99.83%

Masino 82.48% 97.43% 98.63% 99.16%

Lin 95.68% 97.94% 98.63% 99.35%

Jiang 95.43% 98.17% 99.11% 99.69%

Schlicker 96.36% 98.31% 98.93% 99.53%

DisPheno was compared with other five methods on the optimal patient with the
known disease

algorithms. 56.48% of candidate diseases rank the highest
using DisPheno. Instead, the ratio of other five meth-
ods are 42.74% (PhenoSim), 20.04% (Masino), 0.5% (Lin),
0.32% (Jiang) and 1.82% (Schlicker). The second highest
is PhenoSim, which is 13.74% less than DisPheno. The
great gap shows the performance of our method in dis-
ease identification, especially on noisy simulated patient
dataset.

Overall, DisPheno performs better than other five sim-
ilarity measurements on the stimulated datset with noise
phenotype terms, and it shows great robustness. It implies
huge potential on clinical disease diagnosis.

Performance evaluation on noisy & imprecision dataset
Except noisy phenotype terms, clinical datasets often con-
tains imprecision phenotypes. In this part, we performed
DisPheno on the noisy and imprecision patient dataset
with known disease to evaluate the performance respec-
tively.

Compared with other five methods, DisPheno shows
good and stable performance on simulated patients with
noisy and imprecision phenotypes (see Table 2). The per-
centage of true disease rank among top-10 using DisPheno
reaches 22.34%, which is much higher than others. It indi-
cates that DisPheno would perform well on the clinical
datasets and it shows great prospects on disease diagnosis.

Effects of parameters on DisPheno model
In this part, we test the various parameters on DisPheno
model. In the first part of our model, we utilize both gene
and disease annotations. We run DisPheno multiple times
by varying the parameter w from 0.0 to 1.0 to test the
performance of different weighted coefficients. Figure 6
shows that DisPheno achieves the best performance when
the weighted coefficient is equal to 0.5 or 0.9.

Besides, we also run different parts of DisPheno to
evaluate the contribution of different components in the
model. Compared with previous algorithm PhenoSim,
this novel model mainly adds four parts to improve the

Fig. 4 Cumulative rank distribution of noisy patient dataset with the known causative gene. The x-axis is the rank threshold and the y-axis is the
cumulative probability of true disease rank
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Fig. 5 Cumulative rank distribution of noisy patient dataset with the known disease. The x-axis is the rank threshold and the y-axis is the cumulative
probability of true disease rank

performance of identifying true disease. First part is uti-
lizing both gene and disease to annotate phenotype terms,
named as Anno. Second part of our model mainly con-
sider the effect of the distance between two phenotype
terms, thus we add (1 − dist(ti, tj)/mostDepth) in the pro-
cess of calculating phenotype term similarity, named as
Depth. Besides, we utilize TF-IDF and Cosine Similar-
ity to measure the similarity between any two phenotype
terms based on their definitions. We then add term def-
inition similarities into phenotype topological structure,

Table 2 The percentage of cumulative rank distribution

Method Top-10 Top-20 Top-30 Top-40 Top-50

DisPheno 22.34% 36.00% 44.55% 52.55% 58.07%

PhenoSim 3.86% 11.76% 20.69% 29.03% 36.49%

Masino 7.12% 23.76% 38.21% 48.89% 56.57%

Lin 2.14% 8.16% 15.16% 21.77% 27.98%

Jiang 1.66% 2.57% 3.45% 4.32% 5.25%

Schlicker 1.89% 6.88% 13.67% 20.34% 26.78%

DisPheno was compared with other five methods on the noisy & imprecision patient
with the known disease

and convert original directed acyclic graph into a weighted
directed acyclic graph. This part is named as Weight.
In the part of calculating phenotype term similarity, we
calculate PMI matrix to measure the association of pheno-
type terms. This step is named as PMI. We run our model
with different single part to evaluate the performance of
DisPheno. Figure 7 shows that each part of DisPheno con-
tributes to improve the performance of identifying true
disease from disease candidate sets. From this experimen-
tal results, we can find that the phenotype annotation
method, distance between two phenotype, definition of
phenotype term and association of phenotype sets are all
critical to phenotype similarity measure and it could sig-
nificantly improve the performance of disease diagnosis.

Performance evaluation on gene and disease similarity
To further test the performance of DisPheno, we also apply
our method on similarity measurement of gene and dis-
ease. Each gene or disease can be annotated by a set of
phenotype terms. Therefore, gene or disease similarity
measurement can be translated into a task of measuring
phenotype set similarity. We run our method DisPheno
on a gene set and a disease set. Both of the two sets con-
tain 20 genes or diseases. We use venn diagram to show
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Fig. 6 The histogram of cumulative rank distribution with different weighted coefficient between gene and disease annotations. The x-axis is the
four different top ranks and the y-axis is the cumulative probability of true disease rank. When the weighted coefficient is 0.5 or 0.9, DisPheno
achieves better performance on the optimal patients with known causative gene dataset

the experimental results of five measurements (DisPheno,
PhenoSim and other three methods randomly selected
from Masino, Jiang, Lin and Schlicker). In detail, we firstly
rank gene or disease pairwise similarities calculated by all
five methods. Then, we calculate the intersection of top-
20 gene pairs or disease pairs, and visualize the result by
venn diagram.

The venn diagram (Fig. 8) shows that DisPheno is
slightly better than other similarity measurements. We
compare DisPheno and PhenoSim with other three meth-
ods which randomly selected from four phenotype sim-
ilarity measurements. In the task of gene similarity cal-
culation, the top-20 gene pairs of DisPheno are all part
of others. In contract, PhenoSim contains 2 or 4 gene
pairs which do not belong to any intersection. Similarity,
DisPheno has fewer single disease-pairs than others in the
task of measuring disease similarity.

Besides, we used the visualization tool of PhenoSimWeb
to visualize the disease and gene set similarity [25].
PhenoSimWeb is an online application which can be used
to calculated phenotype, gene and disease similarity. It
also can predict disease and causative gene based on the
input phenotype set. PhenoSimWeb contains other useful
tools, such as text description translator and visualization

interface. And the visualization interface of disease set
similarity calculated by DisPheno is shown in Fig. 9. The
main panel is the terms association network, where nodes
represent disease terms and edges represent similarities
between diseases. The upper left is the mini control
panel, where you can adjust threshold and visual layout.
The lower left part is the overall distribution of simi-
larity scores. The upper right shows the neighborhood
of selected disease term “OMIM:601894”. This visualiza-
tion webpage provides user a clear and convenient way to
analysis the results of disease similarity.

PhenoSimWeb is an online phenotype similarity calcu-
lating and visualizing application, which currently con-
tains five phenotype similarity measurements, including
PhenoSim, Masino, Jiang, Lin and Schlicker. And in this
paper, we propose a novel HPO-based phenotype similar-
ity method. We will add our method DisPheno into the
online tool PhenoSimWeb and enrich phenotype similarity
measurement of this web application in the future.

Conclusions
The high-speed development of biological techniques
such as next generation sequencing has greatly improved
efficiency of cancer prediction and disease diagnosis.
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Fig. 7 The histogram of cumulative rank distribution with different parts of DisPheno. The x-axis is the four different top ranks and the y-axis is the
cumulative probability of true disease rank. The navy blue bar is PhenoSim method with part Anno and the weighted coefficient is 0.5. The sky blue
contains part Depth based on previous step. The green one contains part Weight. The orange one combines part Depth and Weight. The yellow bar
is the method DisPheno which performs better than others

Fig. 8 The venn diagram of top-20 gene and disease pairwise similarity. The blue and green are DisPheno and PhenoSim. The purple, tomato, yellow
and red are Schlicker, Lin, Masino and Jiang respectively. From the intersection of venn figure, DisPheno performs better than other methods on task
of gene and disease similarity measurement. For instance, the upper-left venn diagram shows that there are 5 pairwise genes are included in all
methods’ results. All top-20 pairwise genes of DisPheno are contained by others. In contrast, there are 2 (PhenoSim), 4 (Jiang) and 6 (Masino)
pairwise genes not belongs to any intersections. a Gene b Disease
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Fig. 9 Disease similarity using visualization interface of PhenoSimWeb. We ran DisPheno on a disease dataset and calculated the pair-wise similarity of
these diseases. Then, we visualized the results using the visualization interface of PhenoSimWeb. The main panel is the diseases association network,
where nodes represent disease terms and edges represent similarities between diseases. The upper left is the mini control panel, where you can
adjust threshold and choose different visual layout. The lower left part is the overall distribution of similarity scores. The upper right shows the
neighborhood of selected disease term “OMIM:601894”

However, intricate phenotype ontology and high genetic
heterogeneity have stunted further improvement of dis-
ease identification. As an useful and powerful tool, HPO-
based phenotype semantic similarity could fill this gap
and accelerate the disease diagnosis effectively. In this
paper, we proposed an unique and novel phenotype sim-
ilarity measurement, called DisPheno, which integrates
multiple types of information: hierarchical structure, phe-
notype term annotation and text description. Compared
with existing five state-of-art methods on the optimal and
noisy datasets, our method performs much better than the
others. In summary, DisPheno accelerates the efficiency
of disease identification significantly and it also shows
greatly potentiality in practical clinical studies.
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