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Abstract

Background: Characterization of drug-protein interaction networks with biological features has recently become
challenging in recent pharmaceutical science toward a better understanding of polypharmacology.

Results: We present a novel method for systematic analyses of the underlying features characteristic of drug-protein
interaction networks, which we call “drug-protein interaction signatures” from the integration of large-scale
heterogeneous data of drugs and proteins. We develop a new efficient algorithm for extracting informative drug-
protein interaction signatures from the integration of large-scale heterogeneous data of drugs and proteins, which is
made possible by space-efficient representations for fingerprints of drug-protein pairs and sparsity-induced classifiers.

Conclusions: Our method infers a set of drug-protein interaction signatures consisting of the associations between
drug chemical substructures, adverse drug reactions, protein domains, biological pathways, and pathway modules.
We argue the these signatures are biologically meaningful and useful for predicting unknown drug-protein
interactions and are expected to contribute to rational drug design.
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Background
Target proteins of drug molecules are classified into a pri-
mary target and off-targets. The former is the desired
target, whereas the latter could lead to adverse drug reac-
tions [1] or unexpected beneficial effects in drug reposi-
tioning [2]. Therefore, comprehensive analysis throughout
primary targets and off-targets on a genome-wide scale
is crucial in drug discovery. The in silico approach is
expected to improve the research productivity in this field.

Several computational methods have been presented
for predicting drug-protein interactions (or compound-
protein interactions) from chemogenomic and pharma-
cogenomic viewpoints on a large-scale. The basic idea
behind the chemogenomic approach is that chemically
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similar drugs are expected to interact with similar pro-
teins, with which the similarity of drugs and proteins are
defined based on their side-effects and the amino acid
sequences, respectively [3–8]. On the other hand, the key
idea behind the pharmacogenomic approach is that phe-
notypically similar drugs are predicted to interact with
similar proteins, on the basis of drug side effects and/or
protein sequences [9–12]. However, previous predictive
models are not easily interpretable, making it difficult
to extract biological features characterizing drug-protein
interactions and making it impossible to give insights into
the theoretical basis of interactions.

The characterization of drug-protein interaction net-
works with biological characteristics has become a
challenging problem in modern pharmaceutical science
toward better understanding of poly-pharmacology. It is
hypothesized that polypharmacology is involved in var-
ious features of drugs and target proteins (e.g., chemi-
cal substructures, pharmacophores, functional sites, and
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pathways) and complicated associations between the het-
erogeneous features.

A variety of feature extraction methods have recently
been proposed for automatically characterizing drug-
protein interactions. A data mining method was proposed
for extracting molecular substructure pairs appearing fre-
quently in interacting drug-target pairs [13]. Machine
learning methods with sparse statistical models were pre-
sented to associate protein domains with drug chemical
substructures [14, 15] or with drug side effects [16]. The
inference of proteins eliciting drug side effects has been
reported by several groups [17, 18]. However, the scala-
bility of these methods is very limited, and these studies
were conducted from the perspective of either protein
functional sites, drug chemical substructures or drug phe-
notypic effects. There is a strong and growing need to
develop efficient and scalable methods for characteriz-
ing overall drug-protein interactions with many types of
features of drugs and proteins at once.

We present a novel method for systematic analyses
of the underlying features characteristic of drug-protein
interaction networks, which we call “drug-protein inter-
action signatures”. We develop a new efficient algorithm
for extracting informative drug-protein interaction signa-
tures from the integration of large-scale heterogeneous
data of drugs and proteins, which is made possible by space-
efficient representations for fingerprints of drug-protein
pairs and sparsity-induced classifiers. In the results, our
method infers a set of drug-protein interaction signatures
consisting of the associations between drug chemical sub-
structures, adverse drug reactions, protein domains, bio-
logical pathways, and pathway modules. We argue that
these signatures are biologically meaningful and useful
for predicting unknown drug-protein interactions. To the
best of our knowledge, this is the first report on char-
acterizing a large-scale drug-protein interaction network
with various biological features of drugs and proteins in
an integrative framework. The drug-protein interaction
signatures comprehensively inferred with our method are
expected to contribute to rational drug design.

Results
Drug-protein interactions
We got the information on drug-protein interactions from
five databases: ChEMBL [19], KEGG [20], DrugBank [21],
PDSP Ki [22], and Matador [23]. The number of unique
drug-protein interactions in the merged dataset is 78,692.
These interactions involve 2302 drugs and 2334 target
proteins, and the number of all possible drug-protein pairs
is 5,372,868. We utilized this dataset in our experiments.

Drug profiles
We described drug chemical structures by 17,017 chemi-
cal substructures using the KEGG Chemical Function and

Substructures (KCF-S) descriptor [24]. We represented
each drug by a 17,017-dimension binary vector where the
presence or absence of each of the KCF-S substructures
is coded as 1 or 0. The resulting vector is referred to as a
chemical profile.

We obtained the information about adverse drug reac-
tions (ADRs) from the public release of the adverse
event reporting system (AERS) of the US Food and Drug
Administration (FDA) [25]. We derived 2,904,050 reports
from 2004 to 2010 and mapped the drug names to KEGG
following a previous study [12]. Based on the resulting
10,543 ADRs, we represented each drug by a 10,543-
dimension binary vector where the presence or absence
of each ADR is coded as 1 or 0. The resulting vector is
referred to as an ADR profile.

Finally, we constructed an integrative feature vector of
each drug by concatenating the chemical and the ADR
profiles into a single one. The dimension of the resulting
feature vector of each drug was 27,560.

Protein profiles
We obtained functional domains, biological pathways,
and pathway modules (compactly clustered pathways)
about proteins from the KEGG [20] and the PFAM [26]
databases.

Based on 2678 PFAM domains, we represented each
protein by a 2678-dimension binary vector where the
presence or absence of a functional domain is coded as 1
or 0. The resulting vector is referred to as domain profile.
Based on 270 KEGG pathway maps, we represented each
protein by a 270 dimension binary vector where the pres-
ence or absence of the involvement in a biological pathway
is coded as 1 or 0. The resulting vector is referred to as a
pathway profile. Based on 107 KEGG pathway modules,
we represented each protein by a 107-dimension binary
vector where the presence or absence of the involvement
in a pathway module is coded as 1 or 0. The resulting
vector is referred to as module profile.

Finally, we constructed an integrative feature vector of
each protein by concatenating the domain, pathway, and
module profiles into a single profile. The dimension of the
resulting feature vector of each protein was 3055.

We address the problem of extracting features charac-
terizing drug-protein interaction networks in the frame-
work of supervised classification.

Linear model for drug-protein pairs
Let C be a drug (or a drug candidate compound) and
let P be a target protein (or a target candidate pro-
tein). We represent a drug-protein pair (C, P) as a high
dimensional feature vector �(C, P) and present a linear
function, f (C, P) = wT�(C, P), whose output is used to
predict whether a (C, P) is an interacting pair or not. The
weight vector w is estimated such that each drug-protein
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pair is correctly classified into the interaction class (pos-
itive class) or non-interaction class (negative class) based
on the training set.

An advantage of the linear model is that one can
interpret features effective for predictions from learned
models. Since each element in �(C, P) corresponds to an
element of w, effective features can be selected by extract-
ing highly weighted features. However, the performance
of the linear model depends heavily on the feature vector
design.

We represent each drug-protein pair as a high dimen-
sion feature vector by taking the tensor product of a drug
profile and protein profile. The representation is similar
to that in previous studies [15, 16]. The profile of a C is
defined as a D-dimension binary vector:

�(C) = (c1, c2, ..., cD)T ,
where ci ∈ {0, 1}, i = 1, ..., D. The profile of a P is defined
as a D′-dimension binary vector: �(P) = (p1, p2, ..., pD′)T ,
where pi ∈ {0, 1}, i = 1, ..., D′. We compute the tensor
product between a drug profile �(C) and protein profile
�(P), and define a feature vector �(C, P) as follows:

�(C, P) = (c1p1, c1p2, ..., c1pD′ , c2p1, ...cDp1, ..., cDpD′)T .

where �(C, P) is composed of all possible products
between elements in �(C) and those in �(P). The result-
ing feature vector is a D×D′-dimension binary vector, i.e.,
fingerprint, for encoding cross-integrated biological fea-
tures. This is referred to as a “tensor-product fingerprint”.

In this study, �(C) was a 27,560-dimension binary vec-
tor, and �(P) was a 3055-dimension binary vector. Thus,
the tensor-product fingerprint �(C, P) of each drug-
protein pair is a 84,195,800-dimension binary vector.

A simpler way for representing each drug-protein pair is
to concatenate �(C) and �(P) into a single feature vector
as �(C, P) = (

�(C)T , �(P)T)T [7]. However, it cannot
determine the correlation between drug and protein fea-
tures. The feature vector is referred to as a “concatenated
fingerprint”.

Logistic regression
We apply logistic regression to train the weight vector in
the linear model and introduce L1-regularizations to pre-
vent over-fitting. The L1-regularization induces sparsity in
the weight vector and drives most of the weight elements
corresponding to unimportant features to zeros, which
makes it easier for us to interpret the model and extract
features.

Minimizing the logistic loss with L1-regularization for
a large number of high dimensional data is difficult, but
several efficient algorithms have recently been proposed.
To the best of our knowledge, LIBLINEAR [27] is the
most efficient and high-performance algorithm, but it
requires a huge amount of memory for extremely high-
dimensional data. In fact, it was not computationally

feasible for our dataset in this study because of the mem-
ory problem (see the “Results” section). To overcome this
difficulty, we introduce a gradient-based method.

Given a collection of drug-protein pairs and their labels(
�(Ci, Pj), yij

)
where yij ∈ {+1, −1} (i = 1, ..., n, j =

1, ..., m), the logistic loss is defined as

LR(w) =
n∑

i=1

m∑

j=1
log(1 + exp

(
−yijwT�(Ci, Pj)

)
.

The logistic loss with L1-regularization is defined as

L1-LR(w)=
n∑

i=1

m∑

j=1
log

(
1+exp

(
−yijwT�(Ci, Pj)

))
+C‖w‖1,

where ‖w‖1 is L1 norm (the sum of absolute value in the
vector) and C is a regularization parameter.

Since L1-LR(w) is a convex function, the weight vector
w minimizing L1-LR(w) can be found at zero of its gra-
dient. However, it is impossible to compute the gradient
of L1-LR(w), because L1 norm contains non-differential
points where wd = 0. Instead, we compute the d-th
dimensional gradient ∇dLR(w) of LR(w) as follows:

∇dLR(w) =
n∑

i=1

m∑

j=1

−yij�d(Ci, Pj) exp
(−yijwT�(Ci, Pj)

)

1 + exp
(−yijwT�(Ci, Pj)

) ,

where �d(Ci, Pj) is the d-th dimensional value of
�(Ci, Pj). We then compute the D × D′-dimensional gra-
dient vector ∇LR(w) ∈ �D×D′ as

∇LR(w) = (∇1LR(w), ∇2LR(w), ..., ∇D×D′LR(w)
)T .

The use of ∇LR(w) enables the global minimum for
the optimal w in L1-LR(w) to be found using an efficient
gradient-based optimization algorithm called orthant-
wise limited-memory quasi-newton (OWL-QN) [28]. The
L1-regularized logistic regression methods, with the ten-
sor product of the fingerprint proposed and with the
concatenated fingerprint, is referred to as L1LOG-tensor
and L1LOG-concat, respectively.

For comparison, we also trained models with L2-
regularized logistic regression using the gradient-based
algorithm called the limited memory quasi-Newton
(L-BFGS) [29]. The L2-regularized logistic regression
method, with the tensor-product fingerprint and the con-
catenated fingerprint, are referred to as L2LOG-tensor and
L2LOG-concat, respectively.

Space-efficient representation of drug-protein pairs
Compact representation of drug-protein pairs is crucial
for training linear models in memory, so we use the set
representation with items corresponding to dimensions of
one bit in the fingerprint. However, this still consumes
a huge amount of memory for storing them, resulting
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Bit string R11            1       1      10
Bit string P11                 1       1      01     
Bit string R12              10     10      10      10     
Bit string P12              01     01      01      01

Bit string R13              10     10      10    100
Bit string P13              01     01      01    001

i) Fingerprints of drug-protein pairs
ii) Set represetation of 
   fingerprints (SET)

iii) Compute differences between k-th element
     S(Ci,Pj)[k] and (k-1)-th element S(Ci,Pj)[k-1]

iv) Variable-length array representation of 
fingerprints  (VLA).  S’ (Ci,Pj) is preresented by 
two bit strings Rij ,and Pij. S’ (Ci,Pj)[k] is represented
by corresponding substring in Rij. Pij encodes 
length of each substring of Rij.

v)  Trie representation of fingerprints (left) and succinct trie representation of 
    fingerprints (SUCTRIE) (right). SUCTRIE consists of bit string and two arrays.

S11 S12 S13

6 98

2

1

2 3

4 5

6 7

8 9

0

1

1

2

2

2

2 4

                  Trie 
Succinct trie (SUCTRIE)

BitstringT

Array D

Array I

Fig. 1 Brief summary of constructing space-efficient representations of fingerprints for drug-protein pairs constructed with our proposed method:
VLA and SUCTRIE

Fig. 2 Part of obtained drug-protein interaction signature network among five features, i.e., drug chemical substructures (blue), adverse drug
reactions (red), protein domain (gray), biological pathway (green), and pathway module (yellow). Node size represents degree of each feature, and
edge width represents corresponding weight in model
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(a) (b)

Fig. 3 Example of drug-protein interaction signature: association between drug-chemical substructure (SKELETON C1b(N1d)-C1b(O7a) in KCF-S
format) and biological pathway (hsa04080 Neuroactive ligand-receptor interaction). a Horizontal axis shows drugs sharing chemical substructure,
and vertical axis shows proteins sharing biological pathway. Color of each element corresponds to number of databases storing corresponding
interaction. b Chemical structures of drugs sharing substructure are shown, and extracted substructure is highlighted in red (see Table 1 for further
details)
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in limited scalability in memory for extremely high-
dimensional data. To overcome this memory problem,
we constructed two space-efficient representations of fin-
gerprints. We present a brief overview of these repre-
sentations (further details are given in the supplemental
material [30]).

Figure 1 illustrates the construction of our two repre-
sentations. We first represent each fingerprint �(Ci, Pj) as
a set S(Ci, Pj) = {d|�d(Ci, Pj) = 1, d = 1, ..., D × D′} that
Table 1 Association between KCF-S “RING C1x-C1x-C1y(C1z)-
C1y(C2x)-C1y-C1x-C1x-C1z(C5a+O7a)-C1z(C1a)” and KEGG
pathway hsa04080 Neuroactive “ligand-receptor interaction”. See
also Fig. 4

KCF-S RING C1x-C1x-C1y(C1z)-C1y(C2x)-C1y-C1x-

C1x-C1z(C5a+O7a)-C1z(C1a)

Pathway hsa04080 Neuroactive ligand-receptor interaction

Drug D00952 Megestrol acetate (antineoplastic)

D01299 Chlormadinone acetate (progestin)

D01368 Cyproterone acetate (anti-androgen)

Protein hsa:10800 cysteinyl leukotriene receptor 1

hsa:1128-hsa:1133 muscarinic acetylcholine receptor M1 - M5

hsa:1134 nicotinic acetylcholine receptor alpha-1

hsa:1268 cannabinoid receptor 1

hsa:134,hsa:135,hsa:140 adenosine A1 receptor A1, A2a, A3

hsa:146,hsa:150,hsa:151 adrenergic receptor alpha-1D,2A,2B

hsa:1511 cathepsin G

hsa:152 adrenergic receptor alpha-2C

hsa:153-hsa:155 adrenergic receptor beta-1,2,3

hsa:1812-hsa:1816 dopamine receptor D1-D5

hsa:185-hsa:186 angiotensin II receptor type 1,2

hsa:1909-hsa:1910 endothelin receptor type A, B

hsa:2908 glucocorticoid receptor

hsa:3269,hsa:3274 histamine receptor H1,H2

hsa:3356,hsa:3357,hsa:3358 5-hydroxytryptamine receptor 2

hsa:3362 5-hydroxytryptamine receptor 6

hsa:4159-hsa:4161 melanocortin receptor 3,4,5

hsa:4886,hsa:4887 neuropeptide Y receptor type 1/4/6,2

hsa:4985 delta-type opioid receptor

hsa:4986 kappa-type opioid receptor

hsa:4988 mu-type opioid receptor

hsa:552 arginine vasopressin receptor 1A

hsa:5724 platelet-activating factor receptor

hsa:624 bradykinin receptor B2

hsa:6865,hsa:6869 tachykinin receptor 1,2

hsa:7068 thyroid hormone receptor beta

hsa:7253 thyroid stimulating hormone receptor

hsa:7433 vasoactive intestinal peptide receptor 1

hsa:886 cholecystokinin A receptor

Fig. 4 The association between KCF-S “RING C1x-C1x-C1y(C1z)-
C1y(C2x)-C1y-C1x-C1x-C1z(C5a+O7a)-C1z(C1a)” and KEGG pathway
hsa04080 Neuroactive “ligand-receptor interaction” a The heat map
shows the numbers of databases that register confirmed drug-protein
interactions from KEGG, DrugBank, Matador, Chembl, PSD pi
databases. Horizontal and vertical axes show drugs and proteins,
respectively. Gray, blue, green, yellow, orange and red indicate that 0,
1, 2, 3, 4 and 5 databases contain the corresponding interaction. b
Chemical structures of some drugs, where red areas (if any) show the
extracted substructure indicated by KCF-S. See also Table 1
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contains items corresponding to dimensions of one bit in
�(Ci, Pj). We refer to a set representation of fingerprints
as SET. To minimize each item, we then compute the dif-
ference between the k-th item S(Ci, Pj)[ k] and (k − 1)-th
item S(Ci, Pj)[ k−1] as (S(Ci, Pj)[ k] −S(Ci, Pj)[ k−1] ) and
keep the results in a new set S′(Ci, Pj). We can recover
S(Ci, Pj) by cumulatively adding the items in S′(Ci, Pj).

We constructed our two space-efficient representations
of fingerprints by leveraging the idea behind succinct
data structures that achieve space-efficient representa-
tions of data structures while preserving the property of
fast operations. The first one is a variable-length array for
compactly representing fingerprints. The S′(Ci, Pj) is rep-
resented by two bit strings Rij and Pij which are indexed by
rank/select dictionary, i.e., a succinct data structure for bit
strings. We can randomly access any element in S′(Ci, Pj)
in O(1) time by using fast operations in the rank/select
dictionary [31]. We refer to this variable-length array
representation of fingerprints as VLA.

The second one is a type of succinct trie for rep-
resenting fingerprints. The trie is a data structure for
strings, and it is also practical for representing finger-
prints. A standard point-based implementation of trie
consumes a huge amount of memory, resulting in limited
scalability. Alternatively, we present a compact represen-
tation of trie by using a succinct data structure called
LOUDS [32]. We can recover the original fingerprints
by traversing a succinct trie in a depth-first manner. We
refer to this succinct trie representation of fingerprints as
SUCTRIE.

Extraction of drug-protein interaction signatures
We applied the proposed method (L1LOG-tensor)
to extract drug-protein interaction signatures from
drug profiles (chemical substructures and adverse drug
reactions) and protein profiles (protein domains, biolog-
ical pathways, and pathway modules), based on a large-
scale drug-protein interaction network. Each signature is
the association between a drug feature and protein fea-
ture, where two features in the same signature are thought
of as being associated in terms of drug-protein interac-
tions. The results of all extracted drug-protein interaction
signatures are presented in the supplemental material
[30].

L1LOG-tensor extracted 105,684 signatures, while
L2LOG-tensor extracted 7,843,218 signatures. Note that
the number of all possible combinations of drug features
and protein features is 84,195,504. The number of sig-
natures from our L1LOG-tensor method was much less
than that of L2LOG-tensor, due to the sparsity induced
by L1-regularization. This makes it easier to analyze the
extracted drug-protein interaction signatures for biologi-
cal interpretation, so we focused on analyzing the results
from L1LOG-tensor below.

Figure 2 shows a network representation of some
of the drug-protein signatures extracted with L1LOG-
tensor, where highly weighted associations of five features
of drugs or proteins, that is, drug-chemical substruc-
tures (blue), adverse drug reaction (red), protein pathway
(green), pathway module (yellow) and protein domain
(gray). Only selected results are shown due to space lim-
itation. The inferred signature association network pro-
vides us with clues about the important features behind
the drug-protein interaction network. There has been no
study on the inference of these associations.

Biological interpretation of the extracted signatures
We constructed biological interpretations for the drug-
protein interaction signatures extracted with L1LOG-
tensor. We give only two examples due to space
limitation. The result of all analyzed signatures and
the figures/tables are presented in the supplemental
material [30].

Table 2 Example of drug-protein interaction signature:
association between adverse drug reaction (ADR) (R01631
Graft-versus-host disease) and protein domain (PF14446
Prokaryotic RING finger family 1)

Extracted ADR R01631 Graft-versus-host disease

Extracted domain PF14446 Prokaryotic RING finger family 1

Drugs sharing the
extracted ADR

D00322 Fluconazole (antifungal)

D00333 Ganciclovir (antiviral)

D00399 Valproic acid (anticonvulsant)

D00407 Methylprednisolone
(glucocorticoid)

D06272 Sorafenib tosilate (anticancer,
antineoplastic)

D06413 Nilotinib hydrochloride
(antineoplastic)

D08062 Idarubicin (antineoplastic, antibiotic)

D08066 Imatinib (antineoplastic)

D08524 Sorafenib (antineoplastic,
anticancer)

D08556 Tacrolimus (immunosuppressant)

Proteins sharing
extracted domain

hsa:5587,hsa:23683,hsa:25865 protein kinase
D

hsa:51317 PHD finger protein 21A

hsa:5580 protein kinase C

hsa:64283 Rho guanine nucleotide
exchange factor

hsa:673 B-Raf proto-oncogene protein
kinase

hsa:80829 ZFP91 zinc finger protein

Further details are given in Fig. 5
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Figure 3 shows an extracted signature representing
the association between a drug-chemical substructure
(SKELETON C1b(N1d)-C1b(O7a) in the KCF-S format)
and biological pathway (hsa04080 Neuroactive ligand-
receptor interaction), where the vertical axis on the
heat map (a) shows all drugs sharing the extracted
substructure, and the horizontal axis shows all pro-
teins sharing the extracted pathway. The extracted drug-
chemical substructures on the associated drug struc-
tures (b) are in pink. Drugs and proteins in known
interacting pairs tend to have such extracted features
in the same signature. For example, Propantheline bro-
mide (D00481), Methanthelinium bromide (D00721),
Acetylcholine chloride (D00999), Carbachol (D00524),
Succinylcholine chloride (D00766), and Suxamethonium
chloride (D02275) share a choline skeleton, and all known
to act on acetylcholine receptors. However, there are
many other drugs sharing the extracted drug feature
and proteins sharing the extracted protein feature, and
the drug-protein interactions are not known. Thus, it
may be possible to predict previously unknown interac-
tions between drugs and proteins through the extracted
features in the signatures. See Table 1 and Fig. 4
for detail.

Table 2 shows an extracted signature representing the
association between an ADR (R01631 Graft-versus-host
disease) and protein domain (PF14446 Prokaryotic RING
finger family 1), where all drugs sharing the extracted
ADR and all proteins sharing the extracted protein
domain are also shown. Interestingly, most drugs sharing
the ADR (R01631 Graft-versus-host disease) were related

to inflammation, immunosuppression, and cancer, which
supports the recently expanded concept that inflamma-
tion is a critical component of cancer progression [33]. See
Fig. 5 and Table 3 for detail.

Figure 4 shows an extracted signature representing
the association between a drug-chemical substructure
(RING C1x-C1x-C1y(C1z)-C1y(C2x)-C1y-C1x-C1x-C1z
(C5a+O7a)-C1z(C1a) in the KCF-S format) and bio-
logical pathway (hsa04080 Neuroactive ligand-receptor
interaction). It was observed that Megestrol acetate
(D00952), Cyproterone acetate (D01368) and Chlormadi-
none acetate (D01299) share common ring structures.
All these drugs are known to act on many neuroactive
ligand-receptors. See Table 1 for detail.

Figure 6 show an extracted signature representing
the association between a drug-chemical substructure
(SKELETON C5a(N1b+O5a)-C1c(N1b)-C1b-C8y-C8x-
C8x-C8x-C8x-C8x in the KCF-S format) and biological
pathway (hsa03050 Proteasome). Proteasome inhibitors
have been applied to the treatment of cancer, especially
multiple myeloma. The substructure “SKELETON C5a
(N1b+O5a)-C1c(N1b)-C1b-C8y-C8x-C8x-C8x-C8x-C8x”
corresponds to a phenylalanine residue, which is captured
as a characteristic substructure in known proteasome
inhibitors Bortezomib (D03150) and Carfilzomib (D08880).
See Table 4 for detail.

Performance evaluation on generalization property
If the extracted signatures are biologically meaningful in
terms of drug-protein interactions, they need to have
good generalization to predict drug-protein interactions.

(a)

(b)

Fig. 5 The association between KCF-S “RING C1x-C1x-C1y(C1z)-C1y(C1x)-C1y(C1x)-C1z(C1a+C1y)” and KEGG pathway module “hsa_M00110
C19/C18-Steroid hormone biosynthesis”. a The heat map shows the numbers of databases that register confirmed drug-protein interactions from
KEGG, DrugBank, Matador, Chembl, PSD pi databases. Horizontal and vertical axes show drugs and proteins, respectively. Gray, blue, green, yellow,
orange and red indicate that 0, 1, 2, 3, 4 and 5 databases contain the corresponding interaction. b Chemical structures of some drugs, where red
areas (if any) show the extracted substructure indicated by KCF-S. See also Table 3
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Table 3 The association between KCF-S “RING C1x-C1x-C1y(C1z)-C1y(C1x)-C1y(C1x)-C1z(C1a+C1y)” and KEGG pathway module
“hsa_M00110 C19/C18-Steroid hormone biosynthesis”

KCF-S RING C1x-C1x-C1y(C1z)-C1y(C1x)-C1y(C1x)-C1z(C1a+C1y)

Module hsa_M00110 C19/C18-Steroid hormone biosynthesis

Drug D00040 Cholesterol (pharmaceutic aid) D00066 Progesterone (progestin)

D00067 Estrone (estrogen) D00075 Testosterone (androgen)

D00105 Estradiol (estrogen) D00182 Norethisterone (progestin)

D00185 Estriol (estrogen) D00289 Danazol (Anterior pituitary suppressant)

D00312 Estrone sodium sulfate (estrogen) D00321 Finasteride (alpha-reductase inhibitor)

D00389 Metandienone (androgen) D00408 Methyltestosterone (androgen)

D00443 Spironolactone (diuretic) D00444 Stanozolol (androgen)

D00462 Oxandrolone (androgen) D00490 Oxymetholone (androgen)

D00492 Pancuronium (neuromuscular blocking agent) D00554 Ethinylestradiol (estrogen)

D00575 Mestranol (estrogen) D00734 Ursodeoxycholic acid (anticholelithogenic)

D00765 Rocuronium (neuromuscular blocking agent) D00767 Vecuronium (neuromuscular blocking agent)

D00818 Maprotiline hydrochloride (antidepressant) D00948 Estropipate (estrogen)

D00949 Hydroxyprogesterone caproate (progestin) D00951 Medroxyprogesterone acetate (progestin)

D00952 Megestrol acetate (antineoplastic) D00953 Norethisterone acetate (progestin)

D00954 Norgestrel (progestin) D00955 Nandrolone decanoate (androgen)

D00956 Nandrolone phenylpropionate (androgen) D00957 Testosterone cypionate (androgen)

D00958 Testosterone enanthate (androgen) D00959 Testosterone propionate (androgen)

D00963 Exemestane (antineoplastic) D01161 Fulvestrant (antiestrogen)

D01180 Trilostane (adrenocortical suppressant) D01217 Dydrogesterone (progestin)

D01299 Chlormadinone acetate (progestin) D01301 Metenolone enanthate (anabolic)

D01368 Cyproterone acetate (anti-androgen) D01375 Metenolone acetate (anabolic)

D01413 Estradiol valerate (estrogen) D01617 Estradiol dipropionate (estrogen)

D01639 Tibolone (Menopausal symptoms suppressant) D01943 Potassium canrenoate (aldosterone antagonist)

D01953 Estradiol benzoate (estrogen) D01986 Estriol tripropionate (estrogen)

D01989 Estriol diacetate benzoate (estrogen) D02566 Maprotiline (antidepresant)

D03820 Dutasteride (prostatic hyperplasia) D03917 Drospirenone (aldosterone antagonist)

D04061 Estradiol acetate (estrogen) D04063 Estradiol cypionate (estrogen)

D04064 Estradiol enanthate (estrogen) D04065 Estradiol undecylate (estrogen)

D04066 Estramustine (antineoplastic) D04316 Gestodene (progestin)

D04947 Mesterolone (androgen) D05020 Mexrenoate potassium (aldosterone antagonist)

D05209 Norgestimate (progestin) D05640 Prorenoate potassium (aldosterone antagonist)

D06085 Testosterone ketolaurate (androgen) D06086 Testosterone phenylacetate (androgen)

D06087 Testosterone undecanoate (testosterone) D07121 Alfatradiol (five alfa-reductase inhibitor)

D07127 Norethandrolone (anabolic) D07221 Promestriene (estrogen)

D07222 Nomegestrol (progestin) D07670 Chlormadinone (progestin)

D07766 Cyproterone (antiandrogen) D07918 Estradiol hemihydrate (estrogen)

D07919 Estradiol 17 beta-hemisuccinate (estrogen) D07920 Estriol succinate (estrogen)

D07921 Estriol sodium succinate (estrogen) D08052 Hydroxyprogesterone (progestin)

D08166 Medroxyprogesterone (progestin, antineoplastic) D08167 Megestrol (progestin)

D08250 Nandrolone (anabolic, ophthalmic) D08281 Nomegestrol acetate (contraceptive)

D08285 Norethisterone enantate (progestin) D08409 Prasterone (androgen)

D08573 Testosterone decanoate (androgen) D08574 Testosterone phenylpropionate (androgen)

D09701 Abiraterone acetate (anticancer)
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Table 3 The association between KCF-S “RING C1x-C1x-C1y(C1z)-C1y(C1x)-C1y(C1x)-C1z(C1a+C1y)” and KEGG pathway module
“hsa_M00110 C19/C18-Steroid hormone biosynthesis” (Continued)

Protein hsa:1586 cytochrome P450, family 17, subfamily A

hsa:1588 cytochrome P450, family 19, subfamily A

hsa:3283 steroid delta-isomerase

hsa:3284 steroid delta-isomerase

See also Fig. 5

We tested five feature extraction methods: L1LOG-
tensor, L2LOG-tensor, L1LOG-concat, L2LOG-concat,
and L1LOG-LIBLINEAR-tensor on their abilities
to reconstruct known drug-protein interactions. As
mentioned above, L1LOG-tensor is our proposed

method. The others are previous methods based
on current algorithms or conventional fingerprints
(see the Logistic regression section for further
details). L1LOG-tensor and L2LOG-tensor use tensor-
fingerprints represented by our space-efficient algorithm.

(a) (b)

Fig. 6 The association between KCF-S “SKELETON C5a(N1b+O5a)-C1c(N1b)-C1b-C8y-C8x-C8x-C8x-C8x-C8x” and KEGG pathway “hsa03050
Proteasome” a The heat map shows the numbers of databases that register confirmed drug-protein interactions from KEGG, DrugBank, Matador,
Chembl, PSD pi databases. Horizontal and vertical axes show drugs and proteins, respectively. Gray, blue, green, yellow, orange and red indicate that
0, 1, 2, 3, 4 and 5 databases contain the corresponding interaction. b Chemical structures of some drugs, where red areas (if any) show the extracted
substructure indicated by KCF-S. See also Table 4 for detail
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Table 4 The association between KCF-S “SKELETON
C5a(N1b+O5a)-C1c(N1b)-C1b-C8y-C8x-C8x-C8x-C8x-C8x” and
KEGG pathway “hsa03050 Proteasome”

KCF-S SKELETON
C5a(N1b+O5a)-C1c(N1b)-C1b-C8y-C8x-

C8x-C8x-C8x-C8x

Pathway hsa03050 Proteasome

Drug D00284 Cosyntropin (hormone,
adrenocorticotropic)

D02108 Indium In 111 pentetreotide
(radioactive agent)

D03150 Bortezomib (anticancer,
proteasome inhibitor)

D08880 Carfilzomib (anticancer, proteasome
inhibitor)

Protein hsa:3458 interferon gamma

hsa:5682 - hsa:5688 20S proteasome subunit
alpha 1-7

hsa:5689 - hsa:5699 20S proteasome subunit
beta 1-10

hsa:5707, hsa:5708, hsa:5713 26S
proteasome regulatory subunit N1, N2, N8

See also Fig. 6

L1LOG-concat and L2LOG-concat use previous
concatenated fingerprints [7] represented by the LIB-
LINEAR algorithm [27]. L1LOG-LIBLINEAR-tensor
is a method [15, 16] which uses the tensor-
product fingerprints represented by the LIBLINEAR
algorithm [27].

We conducted the following fold cross-validation in
a pair-wise manner. We first randomly divided all

drug-protein pairs in the gold standard set into five
subsets. Next, we considered four of the subsets as
a training set and the remaining subset as a test
set. We learned a predictive model on the drug-
protein pairs in the training set. Finally, we applied
the predictive model to the drug-protein pairs in the
test set.

We used the receiver operating characteristic curve
(ROC curve), which is defined as a plot of true positive
rates against false positive rates based on various thresh-
olds, and the precision-recall curve (PR curve), which is
defined as a plot of precision (positive predictive value)
against recall (sensitivity) based on various thresholds, as
evaluation measures for prediction performance.

We computed the area under the ROC curve (AUC
score) and the area under the PR curve (AUPR score). The
parameters involved in each method (e.g., regularization
parameter) were fit with AUC and AUPR as the objective
functions.

Figure 7 shows the AUC and AUPR scores in the pair-
wise cross-validation, where the number of negative pairs
in the training set was changed from the same number
of positive examples to that of all possible negative exam-
ples in the training set. We observed that the prediction
accuracy of the models trained with all five methods
improved as the number of negative examples in the train-
ing set increased. This suggests that using all possible
negative examples for learning a predictive model will
enhance prediction reliability. L1LOG-tensor performed
the best.

L1LOG-LIBLINEAR-tensor did not perform well with
an increasing number of negative examples in the training
set because of the memory storage problem. The learn-
ing process with the LIBLINEAR algorithm consumed
all the memory of our machine with 128GB-memory. In

Fig. 7 AUC score (left) and AUPR score (right) in pair-wise cross validation
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Table 5 AUC score, AUPR score, training time in seconds, and consumed memory in megabytes in the pair-wise cross validation
experiments

Method AUC score AUPR score Training time (sec) Memory (MB)

L1LOG-tensor 0.982 ± 0.000 0.643 ± 0.001 85,211 24,079

L1LOG-concat 0.965 ± 0.000 0.324 ± 0.000 9323 177

L2LOG-tensor 0.979 ± 0.000 0.621 ± 0.000 82,853 24,079

L2LOG-concat 0.963 ± 0.000 0.317 ± 0.000 9129 177

L1LOG-LIBLINEAR-tensor − − − > 131, 072

contrast, the other four methods with our space-efficient
algorithm were able to finish the training process. This
suggests that our space-efficient algorithm is more suit-
able and powerful for learning a predictive model on
extremely high-dimensional data.

L1-LOG-tensor and L2LOG-tensor performed better
than L1-LOG-concat and L2LOG-concat, which suggests
that the tensor-product fingerprint can capture rele-
vant information for drug-protein interaction prediction.
On the other hand, the concatenated fingerprint cannot
capture enough information, even though calculation is
faster.

Table 5 shows the AUC score, AUPR score, training
time, and consumed memory in the pair-wise cross-
validation. L1LOG-tensor and L2LOG-tensor consumed
24 GB for learning predictive models on all possible drug-
protein pairs, which suggests their applicability for large-
scale drug-protein interaction prediction. They also took
about 24 hours, which can be considered reasonable on
a practical level, though they were slower than L1LOG-
concat and L2LOG-concat.

In the pair-wise cross-validation, drugs and proteins in
test pairs often overlap with those in the training set.

We conducted a different 5-fold cross-validation to avoid
the overlap of drugs and proteins in test pairs between
those in the training set, which we call “block-wise cross-
validation”. The results of this block-wise cross-validation
are shown in Fig. 8 and Table 6. The same tendency in the
pair-wise cross-validation was also seen in the block-wise
cross-validation. However, the AUC and AUPR scores in
the block-wise cross-validation were much lower than
those in the pair-wise cross validation. The results indicate
that predictions of unknown interactions for new drug
candidates (without known targets) and orphan proteins
(without known ligands) are much more difficult than
detecting missing interactions between drugs of known
targets and proteins of known ligands in practice.

Finally, we tested SUCTRIE, VLA, and SET on their
space-efficiencies of fingerprint representations. Note
that SET is a standard representation, and SUCTRIE and
VLA are those constructed with our proposed method.
Figure 9 shows a plot of the consumed memory against
the number of fingerprints. SET is known to use a large
amount of memory for storing all possible fingerprints.
In fact, it consumed 57GB for storing all possible drug-
protein pairs in our dataset, which limits its practical

Fig. 8 AUC score (left) and AUPR score (right) in block-wise cross validation
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Table 6 AUC score, AUPR score, training time in seconds, and consumed memory in megabytes in the block-wise cross validation
experiments

Method AUC score AUPR score Training time (sec) Memory (MB)

L1LOG-tensor 0.574 ± 0.056 0.068 ± 0.002 71,353 19,482

L1LOG-concat 0.596 ± 0.058 0.064 ± 0.002 8323 175

L2LOG-tensor 0.562 ± 0.059 0.060 ± 0.019 70,253 19,482

L2LOG-concat 0.577 ± 0.069 0.054 ± 0.019 8010 175

L1LOG-LIBLINEAR-tensor − − − > 131, 072

usage. In contrast, our proposed representations SUC-
TREE and VLA are more space-efficient than SET.
The consumed memory of SUCTREE was slightly
smaller than that of VLA. SUCTREE and VLA con-
sumed 16 and 20 GB, respectively, for storing all pos-
sible drug-protein pairs, Suggesting the usefulness of
our SUCTREE and VLA. In fact, we were not able
to conduct all the analyses for this study without
SUCTRIE.

Conclusions
We proposed a novel method of extracting the under-
lying features characterizing overall drug-protein inter-
actions, which we call “drug-protein interaction signa-
tures”. We extracted a set of drug-protein interaction
signatures consisting of the associations between drug
chemical substructures, adverse drug reactions, protein
domains, biological pathways, and pathway modules, and

argued that the extracted drug-protein interaction signa-
tures were biologically meaningful. Our proposed method
is original in that the space-efficient representations for
high-dimensional fingerprints of drug-protein pairs, in
the characterization of a large-scale drug-protein inter-
action network with various features in an integrative
framework, and in the interpretability for the extracted
feature associations.

Our proposed method will be useful for various appli-
cations in drug discovery. A limitation of the method
is that it cannot extract the associations between
different attributes of drugs or proteins. For exam-
ple, it cannot detect the associations between drug-
chemical substructures and adverse drug reactions or
the associations between protein domains and biolog-
ical pathways. Extension of the method for analyzing
such more complicated features is an important future
work.

Fig. 9 Comparison of consumed memory between different fingerprint representations: SUCTRIE, VLA and SET
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