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Abstract

Background: Genome-scale models of metabolism and macromolecular expression (ME models) enable
systems-level computation of proteome allocation coupled to metabolic phenotype.

Results: We develop DynamicME, an algorithm enabling time-course simulation of cell metabolism and protein
expression. DynamicME correctly predicted the substrate utilization hierarchy on a mixed carbon substrate medium.
We also found good agreement between predicted and measured time-course expression profiles. ME models
involve considerably more parameters than metabolic models (M models). We thus generate an ensemble of models
(each model having its rate constants perturbed), and then analyze the models by identifying archetypal time-course
metabolite concentration profiles. Furthermore, we use a metaheuristic optimization method to calibrate ME model
parameters using time-course measurements such as from a (fed-) batch culture. Finally, we show that constraints on
protein concentration dynamics (“inertia”) alter the metabolic response to environmental fluctuations, including
increased substrate-level phosphorylation and lowered oxidative phosphorylation.

Conclusions: Overall, DynamicME provides a novel method for understanding proteome allocation and metabolism
under complex and transient environments, and to utilize time-course cell culture data for model-based
interpretation or model refinement.
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Background
Almost 70 years ago, Monod posited that the rate-
limiting steps for exponential growth is expected to be
distributed over hundreds or thousands of reactions that
form an enzymatic reaction network. In the same study,
he observed that Escherichia coli cultured in media con-
sisting of two limiting carbon sources underwent two
exponential growth phases separated by a short lag phase
[1]—the phenomenon he coined diauxie. Today’s genome-
scale models of E. coli now account for over 2,000
metabolic reactions, and over 4,000 steps involved
in the macromolecular expression machinery [2–4].
Consequently, recent studies have been approaching the
classic problem of understanding the mechanisms and
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constraints that govern cellular dynamics armed with a
comprehensive viewof the genome-scale enzymatic network.

Genome-scale modeling of cell metabolism
Computing the genotype-phenotype relationship is a
fundamental challenge for computational biologists.
Constraint-based reconstruction and analysis (COBRA)
provides one approach for systems-level computation of
biological networks using genome-scale biochemical net-
work reconstructions [5]. Flux Balance Analysis (FBA)
[6] in particular simulates flux distributions through a
metabolic network by optimizing a cellular objective, such
as maximizing growth rate subject to physicochemical,
regulatory and environmental constraints. COBRA has
been used to address a large variety of biological prob-
lems [7], and many algorithmic extensions have been
developed [8].
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Accounting for macromolecular constraints
In an important extension of FBA (FBAwMC), the hier-
archy of substrate utilization in mixed carbon media
was predicted correctly by imposing intracellular macro-
molecule crowding constraints [9]. The constraints
imposed were based on approximate crowding coeffi-
cients for cytosolic enzymes based on estimated molar
volume and catalytic efficiency.
Recently, genome-scale reconstructions have expanded

significantly with development of integrated models of
metabolism andmacromolecular expression (MEmodels)
[3, 4, 10–13]. ME models explicitly compute transcrip-
tion and translation machinery requirements to support
metabolic flux distributions. The latest E. coliME models
[11, 12] account for 80% of the proteome by mass and pre-
dict the allocation and limitation of proteome toward cel-
lular functions during optimal growth [14]. Therefore, ME
models considerably expand the scope of systems-level
investigation and computation across multiple biological
scales and processes.

Dynamic simulation of cell metabolism and
macromolecular composition
Constraint-based models of metabolism have been used
in a dynamic simulation framework to investigate by-
product secretion [15], diauxic growth [16], transcrip-
tional regulation [17], and metabolic engineering strate-
gies [18, 19]. Recent studies have also incorporated the
dynamics of protein expression. For example, temporal
resource allocation was studied using a model of the
cyanobacterium Synechocystis sp. PCC 6803 [20]. The
model consisted of 52 reactions and 50 compounds,
and also included coarse-grained reactions for synthe-
sis of macromolecules including ribosome and multiple
enzymes. Meanwhile, Waldherr et al. [21] performed a
detailed mathematical study on the problem of predicting
the dynamics of protein expression and metabolism. They
developed Dynamic enzyme-cost FBA (deFBA), which
accounts for the dynamics of cell metabolism, biomass
production, and biomass composition. The framework
accounts also for enzymatic capacity and the cost of their
production. The approach could predict dynamic adap-
tation of enzyme expression from an optimization prin-
ciple. The method was demonstrated on a core carbon
metabolism model of E. coli.

Objectives and outline of this study
Here, we develop a method to simulate the cellu-
lar dynamics of metabolism, protein expression, and
macromolecular composition in response to environmen-
tal changes. We demonstrate a mathematically simple
approach with a focus on applying it to a large, com-
prehensive network. The largest network we simulate
consists of 7,027 molecular components (small molecules

and macromolecules) and 12,677 reactions involved in
metabolic and protein expression processes [2].
The rest of this study is organized as follows. In Meth-

ods, we first briefly overview the relevant concepts for
computing cell phenotype using a ME model. We then
describe our main contribution, the DynamicME pro-
cedure. We first derive a simple approach for dynamic
simulation usingMEmodels, and extend this procedure to
account for protein “inertia” constraints.We then describe
the methods used for model parameter sensitivity analy-
sis and model validation used in the rest of the paper. In
Results, we apply DynamicME to the case study of batch
growth of E. coli on a mixed carbon substrate medium.
We then address the challenge of interpreting model sim-
ulations when many uncertain parameters are present by
generating an ensemble of models with perturbed param-
eters. These models are analyzed with archetypal analysis
to identify prominent time-course metabolite profiles.
The overall workflow for this study is shown in Fig. 1.

Methods
Growthmaximization for MEmodels
AMEmodel describes a cell’s metabolic andmacromolec-
ular state as a vector of n fluxes, v ∈ R

n (in mmol/grams
dry weight/h) that catalyze biochemical reactions among
m components (i.e., small molecules andmacromolecules)
[2]. To compute the state that maximizes the growth rate
μ (in h−1), one solves the following optimization problem
(1) [2, 22]:

max
μ,v

μ

subject to S(μ)v = 0
l(μ) ≤ v ≤ u(μ),

(1)

where S(μ) ∈ R
m×n is the stoichiometric matrix, and

l(μ) ∈ R
n, u(μ) ∈ R

n are the lower and upper flux
bounds. These three parameters are functions of μ, for
example, due to the hyperbolic relation between growth
rate and translation rate, macromolecule dilution, etc. (see
[2] for a complete description of these relations). Prob-
lem (1) includes constraints in the form of S(μ)v = 0,
where for any fixedμ, we obtain a linear program. Because
our objective function here is to maximize mu, subject
to the μ-dependent constraints (S(μ)v = 0), a global
optimum is found efficiently by bisecting on μ, or using
augmented Lagrangianmethods [22].We note that similar
optimization problems have also been solved in the con-
text of metabolism and protein expression networks using
the Resource Balance Analysis modeling framework (see
SI Text E1 in [23] and [24]).
To solve (1), we used the solveME Python module [22].

Specifically, we used bisection (binary search) as in [11] to
maximize growth rate to six decimal points. SolveME uses



Yang et al. BMC Systems Biology            (2019) 13:2 Page 3 of 15

Fig. 1 Schematic of the overall workflow for this study

the 128-bit (quad-precision) linear program (LP) and non-
linear program (NLP) solver QuadMINOS 5.6 (qMINOS)
[25, 26]. All qMINOS runs were performed with feasibility
and optimality tolerances of 10−20. These tight tolerances
were used to capture solutions involving fluxes as small
as 10−16 mmol/gDW/h and were made possible through
the quad-precision capabilities of qMINOS. The models
used for this study are available in the Github reposito-
ries COBRAme (version 0.0.9) https://github.com/SBRG/
ecoli_me_testing and ECOLIme (version 0.0.9) https://
github.com/SBRG/ecolime. The COBRAme software [2]
was used for building and developing the ME model.

Dynamic simulation using MEmodels
Our DynamicME implementation extends dynamic FBA
(dFBA) [15, 16], which was developed for metabolic mod-
els (M-models). We tested two implementations of the
DynamicME method: one that does not account for pro-
teome dynamic constraints (protein “inertia”) and one
that does.
The first implementation assumes that the protein

abundances can be adjusted freely between time steps.
Also, the uptake rate of a substrate was not made a
function of its extracellular concentration. Instead, flux
bounds were set to zero if the substrate was depleted
(zero concentration), or to a finite value otherwise. Conse-
quently, we did not need to perform a ME-model simula-
tion at every time step. Instead, once exchange (i.e., uptake
and secretion) fluxes were computed by the ME-model,
the same fluxes were used to compute the extracellular

metabolite concentration profile over subsequent time
steps. At each time step, DynamicME checked whether
a substrate became depleted (fully consumed) or newly
available, e.g., by feeding for a fed-batch process or secre-
tion of re-consumable metabolites. If so, a new ME com-
putation was performed with the updated exchange flux
bounds. Here, the ME model is capable of selecting the
optimal set of metabolites to take up from the medium.
The exchange fluxes and growth rate were then updated
according to the new optimal solution. These updated
values were used to compute biomass andmetabolite con-
centrations. This procedure was repeated until the batch
time was reached.
In this first implementation, one can still account for

concentration-dependent uptake rates or different feed
schedules by performing ME-model simulations at every
time step. Furthermore, if additional mechanisms such as
growth inhibition by substrates or products are modeled,
one should perform ME-model simulations at every time
step. The procedure for simulating a batch culture using
dynamicME is described in Procedure DynamicME. This
implementation of DynamicME is also shown schemati-
cally in Fig. 2.

DynamicME with protein inertia constraints
The second implementation accounts for protein abun-
dance at the previous time step (i.e., protein “inertia”).
This implementation requires modifying the ME model
formulation. Thus, at each time step, we solve the follow-
ing optimization problem (2):

https://github.com/SBRG/ecoli_me_testing
https://github.com/SBRG/ecoli_me_testing
https://github.com/SBRG/ecolime
https://github.com/SBRG/ecolime
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Fig. 2 Schematic of the DynamicME procedure. The culture is divided into smaller time steps and extracellular concentrations and biomass are
updated at each timepoint. Metabolite exchange fluxes are computed whenever substrate availability changes due to metabolite depletion, feed,
or secretion. With each ME simulation, the metabolic flux distribution and proteome composition are also updated

max
μ,v,p,δ

μ

s.t. S(μ)v = 0

vformi − μpi = δi, ∀i ∈ Complex
∑

j∈CAT(i)

vij
keffij

≤ pi, ∀i ∈ Complex

pi = p0i + δiH
l(μ) ≤ v ≤ u(μ)

vformi ≥ 0, ∀i ∈ Complex
pi ≥ 0, ∀i ∈ Complex,

(2)

where μ is the growth rate, v ∈ R
n the vector of fluxes

(metabolic and expression processes), vformi ≥ 0 the flux of
protein complex formation reaction for complex i (Com-
plexFormation reactions in the underlying ME model [2]
that convert protein subunits to a complex according to
defined complex stoichiometry), p ≥ 0 ∈ R

k the vector of
protein complex concentrations, δ ∈ R

k the vector of pro-
tein complex concentration differences, p0 ∈ R

k the vec-
tor of protein complex concentrations at the previous time
step, S ∈ R

m×n the stoichiometric matrix that constrains
the m components (metabolites and macromolecules),
and l, u are the lower and upper flux bounds.H is the time
horizon (in hours), which determines the anticipated time
window in which to re-allocate the proteome. The value of
H need not be the same as the simulation time step when
(2) is solved inside the procedure InertiaDynamicME.
In this study, we used H = 2 hours. Complex is the set of

protein complexes that are dynamically constrained, and
CAT(i) is the set of reactions that are catalyzed by protein
complex (enzyme) i. Note that the original ME network
reconstruction accounts for mass balance of all metabo-
lites and macromolecules, including protein complexes.
Because we are now allowing accumulation (δi > 0)
or depletion of complexes (δi < 0), we remove from
S(μ)v = 0 the mass balance constraints on protein com-
plexes in the set Complex, and instead use the constraints
vformi − μpi = δi, ∀i ∈ Complex.
In the protein inertia implementation, we solve Prob-

lem (2) at every iteration, rather than only re-solving
when environmental conditions change. Re-solving at
every iteration is necessary because the intracellular pro-
tein abundances are now potentially changing at every
iteration, i.e., when δi �= 0; therefore, the metabolic
fluxes are also subject to change at every iteration,
whether or not extracellular conditions are changing. The
inertia-constrained dynamicME procedure is described in
InertiaDynamicME.

Variable time step procedure (MinTimeStep)
At every time step, we compute the concentration for the
next time step based on the current concentration ci for
each extracellular metabolite i. If the updated concen-
tration would have become negative, i.e., the time step
was too large, we then compute a new time step accord-
ing to the formula: �tnew,M = min{ci/(−viX) : i =
1, . . . , p}, where p is the number of extracellular metabo-
lites whose concentrations are simulated, and X is the
biomass concentration.
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Procedure DynamicME
Input: Batch time T, simulation step size �t, initial

extracellular metabolite concentrations c0,
initial biomass concentration X0, initial protein
concentrations p0

t ← 0; k ← 0; c ← c0; X ← X0;
RecomputeFlag←True
while Substrates available and t ≤ T do

for i ∈ Extracellular do
if ci ≤ 0 then // Substrate depleted?

lk+1
Ex(i) = 0

else
lk+1
Ex(i) = −1000// l < 0 means uptake

end
if lk+1

Ex(i) �= lkEx(i) then // Bound changed?
RecomputeFlag = True

end
end
/* Only re-solve ME if bounds

changed or first iteration */
if RecomputeFlag then

Solve [μk+1, vk+1] = ME(lk+1,uk+1)
else

μk+1 ← μk

vk+1 ← vk
end
/* Update concentrations */

Xk+1 ← Xk + μk+1Xk�t
ck+1
i ← (vouti − vini )Xk+1�t
pk+1
i ← ∑

j∈Use(i) v
k+1
j /keffij

/* Update time and iteration */
t ← t + �t
k ← k + 1
/* (Optional) Reset recompute flag

*/
RecomputeFlag ← False

end
Result:

{(
ck ,Xk , pk , vk

)
: k = 1, . . . ,K

}

Similarly, we also compute a new time step if an intra-
cellular protein concentration is detected to fall below
zero with the current time step. In this case, we use
the following formula: �tnew,P = min{pi/(δi) : i =
1, . . . , k}. The time step is finally computed as �t =
min

{
�t0,�tnew,M,�tnew,P

}
. If the time step �t differs

from �t0, we re-solve the optimization problem using
the updated time step. This way, we ensure that changes
to the environment or intracellular concentrations are
accounted for in the simulation, regardless of the initial
time step.

Procedure InertiaDynamicME
Input: Batch time T, simulation step size �t, initial

extracellular metabolite concentrations c0,
initial biomass concentration X0, initial protein
concentrations p0

t ← 0; k ← 0; c ← c0; X ← X0; p ← p0;
while Substrates available and t ≤ T do

for i ∈ Extracellular do
if ci ≤ 0 then // Substrate depleted?

lk+1
Ex(i) = 0

else
lk+1
Ex(i) = −1000// l < 0 means uptake

end
end
Solve [μk+1, vk+1, pk+1, δk+1] = InertiaME(lk+1, pk)
/* Update concentrations */

Xk+1 ← Xk + μk+1Xk�t
ck+1
i ← (vouti − vini )Xk+1�t
/* Calculate smallest necessary

time step */

�t ← MinTimeStep(ck+1, vk+1, pk+1, δk+1)
/* Update time and iteration */
t ← t + �t
k ← k + 1

end
Result: {(ck ,Xk , pk , vk) : k = 1, . . . ,K}

Model calibration using literature data
A number of adaptive laboratory evolution (ALE) studies
have now demonstrated that the proteome of wild-type
E. coli is not optimally allocated or efficient for every
single nutrient [27–29]. To accurately reflect this wild-
type proteome state, we calibrated the model with respect
to several known enzymatic features of wild-type E. coli.
First, glycerol kinase is known to be significantly less
efficient for wild-type compared to ALE endpoints [30].
Second, ALE on lactate minimal medium showed mul-
tiple limitations in lactate utilization and enzymes near
the phosphoenolpyruvate (PEP) node [27]. Third, res-
piration is known to have higher proteomic cost than
fermentation, leading to acetate overflow [31]. Based on
these observations, we calibrated the effective rate con-
stants (keff) (see section below for details). For example,
we imposed a realistic turnover rate for isocitrate dehy-
drogenase based on literature data, effectively increasing
proteomic cost for respiration. All calibrated parameters
are listed in Additional file 1: Table S1 along with their
original and adjusted values. Also, oxygen uptake rate
was constrained to−20mmol/gDW/h to reflect transport
limitations not reflected in the proteome cost model.



Yang et al. BMC Systems Biology            (2019) 13:2 Page 6 of 15

Sensitivity analysis of dynamic simulations
In the ME model, effective rate constants (keff) relate
metabolic flux v to enzyme concentration by the relation-
ship v = keff · e, where e is the enzyme concentration [11].
Precise estimates for these parameters are not available for
many reactions and enzymes; therefore, an important step
in ME model-based studies has been to assess sensitiv-
ity of predictions to these uncertainties [32]. In this study,
we investigated the sensitivity of DynamicME predictions
to uncertainties in keff. We perturbed keff values from 0.1
to 10 times the nominal values. To avoid exploring the
full parameter space consisting of thousands of keff val-
ues, we chose relevant pathways and perturbed only these
reactions (Additional file 1: Table S1). We generated 200
random samples. Perturbed MEmodels having good fit to
measured metabolite concentration profiles were treated
as an ensemble. The exact determination of ensembles is
described below.

Archetypal analysis and ensemble of models
Archetypal analysis [33–35] is a dimension-reduction
method in which any data point is approximated as a

convex combination of the computed archetypes; in turn,
each archetype is a convex combination of the data points
[33]. Each archetype lies on the convex hull of the data
and represents a “pure” phenotype. In our study, we
performed archetypal analysis on randomly perturbed
samples of model-predicted time-course metabolite con-
centration profiles (Fig. 3). Thus, each archetype rep-
resents a distinct phenotype with a particular substrate
utilization hierarchy.
To prepare data for archetypal analysis, timepoints and

metabolites were collapsed, resulting in a 2D matrix
of features (timepoints-and-metabolites) × samples. In
archetypal analysis, we then approximate X as X ≈
ZA, where Z is the matrix of archetypes and A is a
matrix of coefficients with the constraints Aij ≥ 0
and

∑p
j=1 Aij = 1 for p archetypes (Fig. 3d).

Thus, X is approximated as a convex combination of
archetypes. The matrix of archetypes Z is constrained
as Z = XB, with the coefficient matrix Bij ≥ 0,∑p

j=1 Bij = 1 for p archetypes; therefore, the archetypes
are constrained to be convex combinations of the data
points X.

a b c

d

e

Fig. 3 Ensemble model estimation and characterization procedure. (a-c) An ensemble of models with prediction error within a threshold was found
by perturbing model parameters (keff). d Archetypal analysis was used to characterize the ensemble where any data point is approximated as a
convex combination of archetypes. e The predicted time-course proteome profile from the ensemble with best fit to measured metabolite
concentrations was compared with measured time-course expression profiles
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Once archetypes were determined, the proteome and
exchange flux dynamic profiles were also mapped to the
archetypes using B. The best number of archetypes was
chosen using the elbow method from a scree plot [36]
(Additional file 2: Figure S1). Archetypal analysis was
performed using the spams Python module [35].

Optimal parameter estimation via metaheuristic
optimization
We developed an optimization-based procedure to match
time-course concentration profiles by estimating keff val-
ues. For optimization, we used a gradient-free meta-
heuristic method (list-based threshold accepting) [37]
because of its efficiency and flexibility. We developed
a parallel implementation of this optimization method
for increased efficiency (Additional file 3: Figure S2).
The implementation allows each parallel node (CPU
thread) to choose between following its local search
trajectory or restarting the search from the current
best solution. This parallel communication was imple-
mented using MPI (Message Passing Interface) via the
mpi4py Python module [38]. The objective function
was the sum of squared errors between measured
and predicted extracellular metabolite concentration
profiles.

Model validation using time-series expression profiles
To validate proteome allocation predictions, we computed
the time-lagged cross-correlation between simulated and
measured time-course proteome profiles. Lagged cross-
correlation measures the similarity between two time-
series where one lags the other, and has been particularly
useful for analyzing time-course expression profiles. For
example, it was used to study regulatory interactions of
galactose metabolism in E. coli [39]. To compute lagged
cross-correlation we used the R function ccf [40].
We obtained microarray hybridization intensity values

over time points from Beg et al. [9]. We log2-transformed
these values for further analysis. The log2-transformed
measurements were compared against simulated protein
mass fractions.We define mass fraction in two ways. First,
for the ME model without protein inertia constraints, the
protein mass fraction fj = vtrslj wj/

∑
j∈Prot

(
vtrslwj

)
, where

vtrslj is the translation rate of protein j, wj is its molecular
weight, and Prot is the set of all proteins in the MEmodel.
Second, for theMEmodel with protein inertia constraints,
the mass fraction fj = pjwj/

∑
j∈Prot(pjwj), where pj is the

enzyme concentration, which is a variable in this modified
ME model.
We first made the time intervals consistent between the

measured and simulated expression profiles. To do so, we
determined the smallest time interval used (i.e., measured
or simulated) for the two profiles and linearly interpolated

each profile separately using this time interval. In this
study, the time interval was 0.1 h.
To determine the lagged cross-correlation for the entire

simulated proteome, we iterated through each lag value,
ranging from −1.7 to 1.7 h, and chose the lag corre-
sponding to the highest median cross-correlation across
all proteins.

Results
Growth onmixed substrates
When grown on complex media, E. coli uses sub-
strates preferentially or simultaneously, depending
on growth conditions [9]. Without additional con-
straints, FBA may erroneously predict simultaneous
uptake of all substrates [9]. FBA with molecular
crowding (FBAwMC) improves FBA by adding molec-
ular crowding constraints, and correctly predicted
substrate utilization hierarchy under a five-carbon
medium [9].
We hypothesized that proteome-limited cellular growth

would exhibit a hierarchy of preferential and simultane-
ous substrate utilization onmixed substrate media. To test
this hypothesis, we implemented the DynamicME pro-
cedure: namely, time-course simulation of genome-scale
integrated models of metabolism and macromolecular
expression (ME-models) (Fig. 2). DynamicME extends
dynamic FBA (dFBA) [16] to ME-models (see “Methods”
section).
Using DynamicME, we simulated cellular growth on the

five-carbon mixed substrate media studied by Beg et al.
[9] and the simulated metabolite concentration profiles
were compared with measurements. To simulate growth
on nutrient-excess batch culture, carbon substrate uptake
rates were effectively unconstrained (i.e., lower bound =
−1000 mmol/gDW/h). Therefore, total proteome limita-
tion became the active constraint rather than nutrient
limitation.
DynamicME correctly predicted the majority of sub-

strate uptake hierarchy characteristics, including the sin-
gle substrate utilization (glucose), mixed utilization, and
acetate reconsumption phases observed by Beg et al. [9]
(Fig. 4). We found a few differences between simulated
and measured profiles. Overall, metabolites were con-
sumed more rapidly than experimentally observed. Also,
acetate secretion was lower than measured, and maltose
was predicted to be utilized earlier than in experiments.
In the absence of additional constraints, FBA was

shown to predict optimal states that accurately reflect
ALE (adaptive laboratory evolution) endpoints but may
exceed the efficiency of wild-type cells [28, 41–43]. To
account for this discrepancy, we implemented a model-
calibration procedure to reflect observed metabolic and
expression profiles better, as described in the following
section.
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a b

Fig. 4 Predicted substrate uptake hierarchy and proteome allocation. a Predicted time-course metabolite concentration profile. b Predicted
time-course proteome mass fraction allocation profile

Model calibration for experimentally consistent
concentration time-course profiles
Both the rate and hierarchy of substrate utilization are
affected byME-model parameters. In particular, the effec-
tive rate constants keff influence predicted pathway usage
[44, 45]. We thus investigated the sensitivity of predicted
substrate utilization hierarchy to uncertainty in keff values.
First, we performed 200 random perturbations of keff

values and performed DynamicME simulations for the
perturbed models. The predictions showed large vari-
ations with respect to substrate utilization hierarchy.
To aid interpretation, we performed archetypal analysis
[33, 34] on the time-course metabolite concentration pro-
files and identified five archetypes (Fig. 5) as described in
“Methods” section. The five archetypes showed consider-
able variation in substrate utilization hierarchy, reflecting
the sensitivity of predictions to uncertainty in keff values.
Of the five archetypes, archetype 4 most closely resem-
bled experiments (Fig. 5). The archetypal model cor-
rectly predicted the sequence of glucose uptake followed
by mixed utilization of maltose, lactate, and galactose,
and finally glycerol uptake and acetate re-consumption.
The acetate secretion rate was also significantly higher
than the initial model and matched measurements
better.
We also implemented an alternative approach to fit

measured concentrations using metaheuristic optimiza-
tion (Additional files 3: Figure S2 and 4: Figure S3). The
optimal profiles were similar to that of archetype 4. Thus,
we proceeded with subsequent analyses using archetype 4,
which in turn represents an ensemble of experimentally-
consistent ME models with differing parameter values.

Predicting time-course proteome allocation
An important novelty of DynamicME is explicit computa-
tion of proteome allocation over a time-course simulation.
For the mixed substrate medium, DynamicME computed
distinct proteome compositions over time, corresponding
to the changing metabolic modes (Fig. 4). We compared
computed proteome dynamics with measured time-series
microarray data [9]. For validation, we used the proteome
profile from the most accurate archetype (archetype 4) as
determined in the previous section (Fig. 5).
To validate proteome allocation predictions, we com-

puted the lagged cross-correlation [46] between simulated
and measured time-course proteome profiles (Fig. 6). The
lag time resulting in the highest median cross-correlation
across all compared proteins was 1.2 h, indicating that
proteome dynamics were faster thanmeasured, which was
consistent with metabolite concentration profiles. With
this fixed lag time, the median lagged cross-correlation
across proteins was 0.64 with values ranging from −0.83
to 0.86 (Fig. 6b).
In addition, certain functional gene sets were predicted

better than others. For example, of 138 genes in the COG
(Cluster of Orthologous Groups) [47] “Translation, ribo-
somal structure and biogenesis”, DynamicME predicted
74% with high (above 0.64, the median) and 11% with
low (below 0.25) cross-correlation, respectively (Fig. 6c).
Similarly, “nucleotide transport and metabolism,” “amino
acid transport and metabolism,” and “inorganic ion trans-
port and metabolism” were predicted with high cross-
correlation. In contrast, of 69 “Energy production and
conversion” genes, 78% had low cross-correlation. Closer
inspection of these energy metabolism genes showed that
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a b

Fig. 5 Sensitivity and archetypal analysis. Archetypal time-course concentration (a) and proteome mass fraction allocation (b) profiles were
computed from simulations with 200 randomly perturbed keff parameters

the main discrepancy lay in genes related to oxidative
phosphorylation: NADHdehydrogenase, cytochrome oxi-
dase, ATP synthase, and citric acid cycle (Additional file 5:
Table S2). The acetate secretion rate for the archetype 4
simulations were lower than measured (Fig. 5a), which
was consistent with the discrepancy in gene expres-
sion dynamics. We next sought to investigate whether
additional constraints could resolve some of these
discrepancies.

Effects of protein inertia on dynamic metabolic and protein
expression profiles
Next, we investigated the effect of dynamic constraints
on intracellular protein abundances. We assume that the
protein concentration at a simulation time step depends
on the concentration at the previous time step and the
rates of synthesis, dilution, and degradation of the pro-
tein. Here, we do not account for active protein degra-
dation. We assume that the synthesis rate is constrained
by the transcription and translation capacity at that time
step, which are computed based on the metabolic and
expression network reconstruction and parameters of
the underlying ME network used. Dilution rate is deter-
mined by growth rate and protein concentration. While
not accounted for here, degradation rate depends on
the capacity of the proteostasis machinery. Overall, the
effect of additional constraints on protein dynamics on
the optimal cellular response to environment change is
not straightforward to deduce without a network-level

model because they are determined by the metabolic and
proteomic states of the cell, which change over time.
We hypothesized that the optimal cellular response to

changing environments should differ between the sce-
narios of (a) instantaneous proteome reallocation versus
(b) reallocation with dynamic constraints. This hypoth-
esis has been investigated on a coarse-grained model
by [48], who showed that proteome adaptation time is
theoretically minimized by sequentially synthesizing the
set of rate-limiting proteins via an on-off control strat-
egy. Related to this hypothesis is the observation that E.
coli expresses proteins that are not needed immediately
[13, 32, 49]. This strategy of protein pre-allocation, which
enables an increase in these proteins in less time, may pro-
vide fitness benefits when alternative carbon sources are
encountered [32]. Additionally, when adaptation time is
constrained, increased allocation of expression machinery
is potentially advantageous to ensure rapid expression—
e.g., by allocating a ribosome reserve under feast-famine
cycles [13].
To test our hypothesis, we extended DynamicME and

implemented proteome dynamic constraints to test the
hypothesis above. Our assumptions are as follows. First,
we assume a cellular objective of growth rate maximiza-
tion, (maxμ in (2)). This is the same cellular objective
as ME in a static environment and DynamicME without
inertia. Second, we assume that under exponential growth
on various carbon sources, active protein degradation is
negligible compared to dilution. Therefore, in (2) we have
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a b

c

Fig. 6 Lagged cross-correlation of simulated vs. measured expression. a Histograms of lagged cross-correlation values and lag time. b Histogram of
cross-correlation values for fixed lag time of 1.2 h. c Functional groups (COGs) of genes with cross-correlations for fixed lag of 1.2 h, which were low
(below 0.25) or high (above 0.64, the median)

a decrease in protein abundance (δi < 0) only when
dilution rate exceeds complex formation rate, i.e., when
μpi > vformi .
Based on these assumptions, we investigated how the

proteome dynamics constraints, referred to as protein
“inertia”, altered dynamic cellular responses to environ-
mental fluctuations.

Protein inertia changes the optimal proteome allocation
The first change due to protein inertia was an overall
dampening of protein expression responses, as expected
by the additional dependency of protein concentrations
on those of the previous time step (2). We also observed

two more important effects of inertia constraints: altered
proteome allocation and metabolic mode.
First, the proteome composition attained by the end of

the batch was itself different, as evidenced by the alloca-
tion of protein groups involved in metabolic and expres-
sion processes (Fig. 7a-b). Principal components analysis
(PCA) also confirmed that while major shifts in proteome
allocation occurred at similar time points for both mod-
els, their overall directions of change differed considerably
(Fig. 7c). A closer examination showed that a major effect
of protein inertia constraints was higher investment in
cofactor and prosthetic group synthesis very early in the
batch culture (Fig. 7b). Specifically, inertia constraints
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a

b

c d

e f

Fig. 7 DynamicME simulations with protein dynamics constraints. Mass fraction of protein groups (by metabolic subsystem as in [49]) for baseline
(a) and inertia-constrained models (b). (c) Principal component analysis (PCA) of protein concentrations. Percent variance explained is shown in the
axis labels. These values were computed using principal components computed from the baseline data. Time points (in hours) are shown next to
the markers. (d) Select protein concentrations that differed markedly between models. (e) Extracellular metabolite concentrations simulated by the
inertia-constrained model. (f) Select metabolic fluxes that differed markedly between models. GAPD: glyceraldehyde-3-phosphate dehydrogenase.
GLCptspp: glucose transport by phosphotransferase system. TPI: triose-phosphate isomerase. FBA: fructose-biphosphate aldolase. ENO: enolase.
ATPS4rpp: ATP synthase. NADH16pp: NADH dehydrogenase (ubiquinone). PDH: pyruvate dehydrogenase. PGI: glucose-6-phosphate isomerase.
PGK: phosphoglycerate kinase. PFK: phosphofructokinase. NDPK1: nucleoside-diphosphate kinase (ATP:GDP)

led to higher synthesis of cysteine desulfurase (IscS) and
the CyaY protein, which transfer sulfur and Fe(II) groups
during iron-sulfur cluster biosynthesis, respectively.
Second, and related to this protein expression change

was a notable shift in metabolic mode. Inertia-constraints
led to lowered oxidative phosphorylation (lower ATP
synthase, and NADH dehydrogenase fluxes) and higher
substrate-level phosphorylation as evidenced by increased
fluxes through phosphoglycerate kinase, phosphofructok-
inase, and overall higher flux through glycolysis (Fig. 7f ).
As a result, acetate accumulation was considerably higher

than without inertia constraints (Fig. 7e), almost match-
ing the extracellular acetate concentrations observed in
experiments by Beg et al. [9].
The predicted alteration in metabolic mode was con-

sistent with the altered proteome allocation. Specifi-
cally, pyruvate dehydrgenase (PDH) flux was predicted
to increase under inertia constraints (on average 1.8-fold
higher than without inertia constraints over all time-
points) (Fig. 7f ). The PDH complex consists of three pro-
tein subunits (E1, E2, and E3), each having multiple copies
[50]. In particular, lipoate moieties are attached to the
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E2 (AceF) subunit. In turn, lipoate synthesis is catalyzed
by lipoyl synthase (LipA), which requires an iron-sulfur
cluster. Thus, the increased requirement for lipoate syn-
thase enzymes explains elevated levels of iron-sulfur clus-
ter synthesis proteins IscS and CyaY.

Discussion
In this study we developed DynamicME, an algorithm
for simulating time-course metabolic and proteomic pro-
files using genome-scale models of metabolism and
macromolecular expression (ME-models). We found that
DynamicME correctly predicted substrate utilization hier-
archy under a five-carbon mixed substrate medium. The
biological basis for this hierarchy was proteome-limited
cellular growth.
To account for the tendency of constraint-basedmodels,

including ME-models, to over-predict metabolic effi-
ciency over wild-type cells, as well as parameter uncer-
tainty, we implemented a model calibration procedure.
In this study we focused on perturbing the effective rate
constants (keff) tomatchmetabolite concentration profiles
better. We arrived at a set of models showing improved
prediction of the substrate utilization hierarchy. We note
that sensitivity of ME model predictions to keff values
has been investigated in several studies including a non-
dynamic context [44], in relation to expression of protein
groups (or sectors) [49], and for defining a core proteome
[45]. However, the sensitivity of the predicted sequence
and preference of utilizing mixed carbon substrates over
time had not been investigated prior to the present study.
A notable feature of DynamicME is its ability to

predict time-course proteome allocation profiles. We
observed good agreement between measured and com-
puted time-course expression profiles (median lagged
cross-correlation of 0.67). Meanwhile, one subtle differ-
ence between measured and predicted time-course pro-
files was that measured profiles changed less abruptly due
to process time constants of transcription and translation
dynamics.
Finally, we investigated how proteome dynamic

(“inertia”) constraints affect the capacity of E. coli to
dynamically adjust its proteome allocation, and how
this affects metabolism. At first glance, it is not intuitive
how the protein inertia constraints (2) would alter the
predicted metabolic and proteomic states, other than
perhaps a simple smoothing operation of the protein
abundances over time. However, because the optimiza-
tion problem at each time step now accounts for a limited
change in protein re-allocation at a future time point, the
optimal solution will be quite different from that when
the proteome can reallocate freely. Furthermore, because
we do not allow active protein degradation by proteases,
the only way to decrease protein abundance is by diluting
the protein (at a rate exceeding translation), which further

limits change of protein abundance. Overall, protein
inertia led to higher reliance on substrate-level phospho-
rylation and reduced oxidative phosphorylation. Coupled
to this altered metabolic response was higher require-
ments for cofactor and prosthetic group biosynthesis, and
higher secretion of acetate as a by-product. These altered
responses more closely resembled experimental measure-
ments compared with the baseline model. This result
reinforces previous studies [48, 51] showing that dynamic
protein expression constraints represent a biological phe-
nomenon that is potentially important for determining
dynamic cellular states under changing environments.

Computational challenges
One of the challenges for DynamicME, and indeed ME
models in general, is the large computational cost com-
pared with metabolic models that do not account for the
protein expression network. Without protein inertia con-
straints, the batch simulation (batch time of 10 h) required
approximately 40 min with a simulation time step of 0.1
h. With protein inertia constraints, this batch simula-
tion required 7 h. This increased computational cost for
the inertia-constrained model stems from solving the ME
model at every time step (i.e., for 100 time steps).
The primary reason for the large computational cost

of ME models is that they are ill-conditioned [52]. The
reason for ill-conditioning is the wide range in magni-
tude of coefficients in the stoichiometric matrix. As a
result, decision variables take on values ranging 15 orders
of magnitude or more [22]. For this reason, ME mod-
els are typically solved using quad-precision optimization
solvers [25]. Quad-precision solvers require more compu-
tational effort than their double-precision counterparts.
Some methods have shown that double precision solvers
can solve ME models with around 10−6 infeasibility, but
this infeasibility tolerance is usually too large for ME
models—hence the use of quad-precision. Additionally,
ME models include nonlinear constraints as functions
of the growth rate but because they are quasi-convex
constraints, the models are computed efficiently using
bisection [22–24] or augmented Lagrangianmethods [22].
Nonetheless, additional solver iterations are required at
each time step of DynamicME in order to solve the ME
model. These two computational costs are magnified by
the larger size of the ME model networks.

Macromolecular expression models and the extension to
dynamic allocation
A number of frameworks exist that model cell metabolism
and macromolecular allocation at the genome-scale. In
addition to the ME framework [2] that provides the
reconstructed metabolic and protein expression network
for this work, a large number of studies have examined
metabolism and macromolecular resource allocation.
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Please see ref. [13] for a more comprehensive review of
such modeling frameworks in non-dynamic contexts, as
the scope of this work focuses on the dynamic extension
of such models.
A representative method for integrating macromolecule

allocation with metabolism (distinct fromME) is resource
balance analysis (RBA). RBA extends flux balance anal-
ysis [53] with additional constraints and reactions to
account for macromolecule synthesis and allocation [54].
A genome-scale RBA model of Bacillus subtilis included
614 reactions and 672 protein-coding genes and modeled
cellular processes of metabolism and macromolecular
processes (translation, protein folding, ribosome matura-
tion, etc.) [23].
RBA has been used for a number of studies, including

estimating in vivo apparent catalytic rates for B. subtilis
by integrating proteomics and fluxomics, predicting the
hierarchy of using carbon and nitrogen sources, predicting
switches between metabolic pathways at the genome-
scale, among others [55]. RBA was also used to examine
the hierarchy of utilizing multiple carbon sources by inte-
grating combinatorial optimization concepts based on a
Boolean formalism [24].
Very recently, a dynamic modeling framework was

developed for RBA, called dynamic RBA (dRBA) [56]. The
dRBAmethod was demonstrated on a simplified model of
a cell consisting of four fluxes representing conversion of
a single substrate into macro-components and a product
of interest [56].
In this context, the advancements of our paper are: (i)

implemented the dynamic simulation of metabolism and
macromolecular expression on a genome-scale MEmodel
having up to 12,677 metabolic and protein expression
reactions, (ii) showed that protein inertia (i.e., limitation
in change of protein abundance over time due to capped
synthesis and dilution rates) can cause a shift in the
metabolic mode (lower oxidative phosphorylation, higher
acetate overflow), and (iii) we provide the software (pub-
licly on Github) with the aim of broader adoption by the
community (see Availability of data and materials).

Future directions
Overall, there is continuing need to develop efficient
computational methods for algorithms that utilize ME
models, such as dynamic simulations. A number of stud-
ies have developed methods for dynamic simulation of
integrated models of metabolism and protein expression
[20, 23, 24]. Time-scale decomposition and collocation
approaches have a rich history in the dynamic model-
ing domain, and they have been applied to metabolic and
expression networks [21]. We hope that future studies will
continue to extend such methods for increasingly larger,
integrated models of metabolism and protein expression.
In particular, the addition of protein inertia constraints

significantly increased the computational cost, and this
framework may be improved in future studies.
Besides computational methods, DynamicME may be

extended further to account for active protein degrada-
tion [57] and dynamic stress responses [58]. For example,
under conditions of starvation stress starvation [59] or
thermal stress [57], active protein degradation becomes
important. Furthermore, during the transition between
multiple carbon sources, E. coli was shown to up-regulate
generic stress response genes [9]. Such extensions would
allow the framework to be applied to non-growth phe-
notypes, where active stress responses including pro-
tein homeostasis become important for reallocating the
proteome to perform cellular tasks besides biomass
synthesis [59].

Conclusions
ME-models compute cellular resource allocation trade-
offs at the proteome scale [13]. This expanded biolog-
ical scope and predictive capability of ME models is
expected to become increasingly useful for biotechno-
logical applications [60]. For example, the metabolic and
proteomic burden to the host of expressing biochemi-
cal production pathways can be computed explicitly using
ME-models. We have shown here that it is furthermore
possible to compute how these genome-wide cellular
resource dynamics determine transient shifts in metabolic
modes under biotechnologically relevant culture condi-
tions: complex media with transient substrate availability.
Thus, as ME-models continue to be reconstructed for
organisms of biotechnological importance, DynamicME
will be a useful approach for analyzing physiological and
omics data from cell culture, and for model-aided biotech-
nological applications that require robust cell factory
operation under environmental fluctuations [61]. Dynam-
icME may also be useful for studying protein expression
dynamics that are relevant for infectious disease (e.g.,
persister states [59]), especially by extending the protein
inertia procedure to account for active protein degra-
dation, or by utilizing a ME model that includes stress
response mechanisms [57, 58].

Additional files

Additional file 1: Table S1. Reactions with perturbed keff . A subset of the
genome-scale metabolic network was perturbed with respect to keff
values, either manually or randomly. (XLSX 17 kb)

Additional file 2: Figure S1. Scree plot for determining number of
archetypes. A notable elbow is observed for five archetypes. (PDF 5 kb)

Additional file 3: Figure S2. Parameter estimation procedure. We
developed a parallel implementation of a metaheuristic optimization
procedure. L-TA: list-based threshold accepting algorithm [37]. Variable
definitions: Tk , threshold value at iteration k; Tmax, maximum threshold
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value; Z0, objective value at current solution; Zk , objective value at
neighboring solution (generated from current solution) at iteration k.
(PDF 189 kb)

Additional file 4: Figure S3. Parameter estimation results. The parallel
L-TA optimization procedure successfully estimated model parameters
that improved consistency with measured concentration profiles. Seven
parallel nodes were used here: 1 local and 6 global nodes (see Additional
file 3: Figure S2 ) for explanation of nodes. (PDF 124 kb)

Additional file 5: Table S2. Lagged cross-correlation values.
Cross-correlation values for fixed lag time of 1.2 h. (XLSX 41 kb)
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