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Abstract

Background: Drug repositioning is a promising and efficient way to discover new indications for existing drugs,
which holds the great potential for precision medicine in the post-genomic era. Many network-based approaches
have been proposed for drug repositioning based on similarity networks, which integrate multiple sources of drugs
and diseases. However, these methods may simply view nodes as the same-typed and neglect the semantic
meanings of different meta-paths in the heterogeneous network. Therefore, it is urgent to develop a rational
method to infer new indications for approved drugs.

Results: In this study, we proposed a novel methodology named HeteSim_DrugDisease (HSDD) for the prediction
of drug repositioning. Firstly, we build the drug-drug similarity network and disease-disease similarity network by
integrating the information of drugs and diseases. Secondly, a drug-disease heterogeneous network is constructed,
which combines the drug similarity network, disease similarity network as well as the known drug-disease association
network. Finally, HSDD predicts novel drug-disease associations based on the HeteSim scores of different meta-paths.
The experimental results show that HSDD performs significantly better than the existing state-of-the-art approaches.
HSDD achieves an AUC score of 0.8994 in the leave-one-out cross validation experiment. Moreover, case studies for
selected drugs further illustrate the practical usefulness of HSDD.

Conclusions: HSDD can be an effective and feasible way to infer the associations between drugs and diseases using
on meta-path-based semantic network analysis.
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Background
Over the past decades, de novo drug development is
expensive, time-consuming and limited to a relatively
small number of targets [1–3]. By conservative estimate,
the cost for developing a new drug is about $1.8 billion
dollars, and the developing time is about 15 years [4]. To
overcome these problems, researchers and pharmaceutical
enterprises have begun to pay their attentions to finding
new medical indications from those approved drugs [5].
Drug repositioning (or drug repurposing), which can

identify new indications of existing drugs, is able to offer a
promising alternative to minimize costs and risks for drug
discovery [6, 7]. At the same time, several successfully
repositioned drugs have shown that such drug reposi-
tioning is an effective way (one example is Minoxidil) [8,
9]. What’s more, since elucidating the molecular basis of
disease on a personalized level has become an attainable
goal, drug repositioning will play a key role in drug discov-
ery and precision medicine paradigm [10, 11].
With the generation of large-scale genomic, transcrip-

tomic and proteomic data, it has become a feasible way
to predict new drug-disease associations based on com-
putational models [12]. These methods can be mainly
divided into three catalogues: machine learning-based
approaches, network-based approaches and text mining
and semantic inference approaches [13]. Here, we will
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present a brief review for each category. A detailed
review is beyond the scope of this paper and has already
been presented by Li [13] and Shahreza [14].
Machine learning-based models make the best use of

biological data in publicly databases for the prediction of
novel associations for drugs and diseases [15]. Firstly,
drugs will be represented by features vectors, which are
derived from their properties, such as drug fingerprint,
chemical structures and side effects, while diseases are
characterized by phenotype data [16]. Then machine
learning-based models are trained based on various fea-
tures of drugs and diseases. Lastly, we can predict
associations of drugs and diseases based on these
learning-based models.
Gottlieb et al [5] firstly proposed a novel method called

PREDICT for the large-scale prediction of drug
indications. The proposed method employed multiple
drug-drug and disease-disease similarity measures to con-
struct a logistic regression classifier for drug repositioning.
Menden [17] mainly made use of both genomic features
of the cell lines and chemical properties of considered
drugs, which aims to build a feed-forward perceptron
neural network model for the sake of solving the drug
repositioning problem. Inspired by Menden, Napolitano et
al [18] put forward a drug-centered computational ap-
proach, which utilized the integrated drug chemical struc-
tures similarity, drug molecular target similarity and
drug-gene expression similarity to complete the predic-
tion. Besides, Zhang [19], Yang [20], Wu [21] and Liang
[22] also put forward their respectively machine learning
models to infer drug-disease associations.
At the same time, network-based methods are widely

used strategy for computational drug repositioning [23–
25]. While traditional study mostly focuses on exploring
the shared characteristics among drug compounds such
as chemical structures [26] and side-effects [9], recent
network-based approaches [27] take pharmacological,
genetic and clinical data into account to explore the
relationships between drugs and diseases from network
point view. The assumption of network-based methods
is that similar drugs are normally associated with similar
diseases and vice versa. Therefore, measuring the
similarity between disease phenotypes is essential for
drug repositioning [28]. One of the most commonly
used rules is guilt-by-association (GBA) in association
relationship prediction [29].
Cheng [30] developed three supervised inference

methods which are called drug-based similarity inference
(DBSI), target-based similarity inference (TBSI) and
network-based inference (NBI) respectively, to predict
both drug-target interactions and drug-disease associa-
tions. These methods made use of the structural similarity,
target-target genomic sequence similarity and drug-target
topology network similarity. Wu et al [31] built a weighted

disease and drug heterogeneous network with the disease
-gene and drug-target relationships from the KEGG data-
base. They clustered the weighted network to identify
modules and then assembled all possible drug-disease
pairs based on the processed modules. Huang [32]
adopted the idea of data fusion and integrated three differ-
ent networks of drug, genomic and disease phenotype
with available experimental data and knowledge. The pro-
posed method inferred drug-disease associations by means
of network propagation approach. More recently, Luo [33]
proposed a novel computational method named MBiRW
to identify potential novel indications for a given drug.
MBiRW mainly developed comprehensive similarity mea-
sures for drugs and diseases to infer the drug-disease
associations. Experimental results on various datasets
demonstrated that the proposed approach has a reliable
prediction performance. Besides, other methods [1, 8, 12,
34] are also employed to predict novel drug and target as-
sociations based on biological networks and achieved
great successes.
Except for machine learning-based and network-based

approaches, text mining and semantic inference methods
are also effective in predicting drug-disease associations.
Especially with the rapid development in text mining re-
search, it is a possible manner to detect novel indications
for existing drugs [35, 36]. Exploring the associations of
drugs and diseases from biomedical literature, MEDLINE
and knowledge databases about genes, has become a
meaningful way. Similar to machine learning-based and
network-based methods, these methods [37, 38] can be an
effective way in addressing drug repositioning problems.
Although network-based methods have been used in

drug repositioning successfully, most of these ap-
proaches simply view objects (nodes) in drug-disease
heterogeneous networks as the same type. What’s more,
these methods do not consider the different semantic
meaning of meta-paths, which is crucial for the
prediction performance of network-based methods. For
example, Luo [33] built a heterogeneous network by in-
tegrating similarities between drugs and disease as well
as the known drug-disease association network. A novel
Bi-Random walk is developed to identify new indications
for existing drugs. However, the algorithm treated all the
edges in the heterogeneous network equally. Indeed,
edges in drug similarity network and disease similarity
network represent the similarity relationship of drugs
and diseases, while the edges in the drug-disease associ-
ation network represent the association relationships.
The values of edges in the similarity network range from
0 to 1, while values of edges in the drug-disease associ-
ation network is 0 or 1. This negligence may lead to
deviations in predicting results.
Machine learning-based models need to find the

information of drugs such as fingerprint, chemical
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structure and so on. Then drugs can be represented by
comprehensive vectors respectively. In this way, we can
solve drug-repositioning problems by utilizing all kinds
of effective machine learning models such as deep learn-
ing. However, machine learning-based models needs to
build highly credible negative datasets firstly, which is
quite difficult for current data. Network-based methods
measure the similarities between drugs and diseases to
construct comprehensive similarity networks. Similarity
measurement models are employed to settle drug-repo-
sitioning problems. While these methods don’t utilize
the negative samples like machine learning-based
methods, they have to mining potential associations in
depth. Text mining and semantic inference methods
mainly explore the associations of drugs and diseases
from biomedical literature. In other words, the associa-
tions obtained by these methods are all supported by lit-
erature, which is alternative to solve drug-repositioning
problem. Therefore, these three methods can make up
for each other.
HeteSim [39] is a path-based measure which can ac-

curately measure the relatedness of nodes with the same
or different types in a heterogeneous network. This
method can effectively capture semantics of meta-paths,
which is crucial for measuring the relevance of nodes in
heterogeneous networks [40–43].
Methods Katz [44] and CATAPULT [45] only use

walk count to measure the similarity between objects,
which is shown in Fig. 1. The walk-count between a
and c is larger than b and c, which indicates that a is
closer to c than b. The association strength between
a and c, b and c is 3 and 2 based on walk count, re-
spectively. However, we find that the connections
starting from node a possess less meaning than the
connections starting from node b. Intuitively, the con-
nectivity between b and c should more intense than a
and c, which is in accordance with the results of
HeteSim. The association strength between a and c, b
and c is 0.567 and 0.707, respectively. Therefore, the
similarity calculated by the HeteSim measure seems
to be a more reasonable result, which can effectively
obtain the semantic meaning of different meta-paths.
In this paper, we proposed a novel method called

HeteSim_DrugDisease (HSDD) based on HeteSim
scores to measure the associations of drugs and dis-
eases. We first construct a heterogeneous network
consisting of the drug-drug similarity network, the
drug-disease association network and a disease-disease
similarity network. Then, we employ the HeteSim
approach to measure the relatedness scores for
drug-disease pairs considering the semantic meaning
of meat-paths. In the end, we utilize HSDD to predict
drug-disease associations. The detail description of
HSDD is presented in Methods Section.

Methods
Datasets
To construct a drug-disease heterogeneous network, we
downloaded information of drugs and diseases from dif-
ferent data sources. The data mainly contains phenotype
similarity network, drug similarity network and drug
-disease associations. Next, we will briefly introduce the
data used in our experiment. The experimental data
used is shown in Table 1.

Disease similarity network
We derived the disease similarity network from MimMi-
ner [46], which is measured based on disease pheno-
types. Each disease has one or more phenotype types in
the OMIM database [47]. According to the MimMiner
database description, the phenotype similarities in the
network are measured based on text mining approaches.
The similarity values have been normalized to the range
[0,1]. Furthermore, we adopt a logistic transformation
process to modify the phenotypic similarities, which

Fig. 1 Example of the heterogeneous network for comparing walk
count and HeteSim measure. Circles, squares and sexangle denotes
three types of object, which are (a, b and c) respectively

Table 1 The summary table for data used in this article

drug similarity
network

disease similarity
network

drug-disease
association
network

size 663 × 663 5080×5080 540×306

edge value (0,1) (0,1) 0,1
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have been proposed by Vanunu [48]. The definition of
the logistic function is

L xð Þ ¼ 1
1þ exp cxþ dð Þ

where x denotes the similarity value between phenotypes
in MimMiner database, cand dare the parameters. In this
study, we set cand das − 15 and log(9999) respectively.
From the equation above, we can find that small similar-
ity values will be transformed to be close zero and large
similarity values will be enlarged.

Drug-disease association network
The drug-disease association network used in this study
was obtained from Gottlieb et al [5]. In this gold stand-
ard dataset, there are totally 1933 known drug
drug-disease associations involving 593 drugs registered
in DrugBank database [49] and 313 diseases listed in
Online Mendelian Inheritance in Man (OMIM) [47]. In
this study, there are totally 1776 associations related 540
drugs and 306 diseases.

Drug similarity network
The drug similarity network was obtained from the sup-
plementary material of the paper [33]. The authors made
the best use of the chemical structures of drugs, similar-
ity correlation analysis and sharing information between
drugs to construct a comprehensive drug similarity net-
work, which has totally 663 drugs in this original drug

similarity network. The similarity values of drugs range
from 0 to 1.

Construction of the drug-disease heterogeneous network
In drug similarity network, let DR = {dr1, dr2,…, drm} de-
notes the set of m drugs. The similarity between driand
drj can be denoted by sim(dri, drj). Similar to drugs, let
DI = {di1, di2,…, din}denotes the set of n diseases in the
disease similarity network. The comprehensive similarity
value can be represented by sim(dii, dij).
The drug-disease association network can be repre-

sented by a bipartite graph G(V, E), where V(G) = {DR,DI}
and E(G) is the edge set which contains all the similarities
of drugs and diseases and associations between drugs and
diseases. If dri is associated with dij is 1, the weight of edge
between them is 1, otherwise, the weight of edge between
them is 0. Then we can construct a drug-disease heteroge-
neous network, which is presented in Fig.2.
Suppose the matrices D, Q and P denote the matrices

for drug similarity network, drug-disease association net-
work and disease similarity network respectively, the drug
-disease heterogeneous network can be expressed as

H ¼ D Q
QT P

� �

where QTdenotes the transpose of matrix Q.

HeteSim description
Given a relevance path called S = (A, R), which is de-

noted by A1 →
R1 A2 →

R2 ⋯→
Rl Alþ1 . The composite relation

Fig. 2 The drug-disease heterogeneous network model. The green nodes denote drugs and red nodes denote diseases. Dash lines represent the
known drug-disease associations while the solid lines represent the similarities of drugs or diseases
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between A1 and Al + 1is defined as R = R1 ∘ R2 ∘ ⋯ ∘ Rl. Ai

refers to one of type nodes in the heterogeneous net-
work and Ri refers to the relationship between Ai andAi

+ 1. For simplicity, we can also use the type name denot-
ing the relevance path such as P = (A1A2⋯Al + 1), when
there is only one relation between pairs.
The HeteSim score between two objects s(s ∈ R1. A1)

and t(t ∈ Rl. Al + 1) based on the relevance path R = R1 ∘
R2 ∘ R3 ∘ ⋯ ∘ Rl, which is expressed as

HeteSim s; t Pjð Þ ¼ HeteSim s; t Rjð Þ ¼ HeteSim s; t R1∘j R2∘R3∘⋯∘Rlð Þ

¼ 1
O s R1jð Þj j I t Rljð Þj j

XO s R1jð Þj j

i¼1

XI t Rljð Þj j

j¼1

HeteSimð Oi s R1jð Þð Þ:; I j t Rljð Þ R2∘R3∘⋯∘Rl−1Þj
ð1Þ

where O(s|R1) is the out-neighbors of s based on relation
R1 and I(t|Rl) is the in-neighbors of t based on relation
Rl. From the eq. (1), we can find that computation of
HeteSim(s, t|P) needs to iterate over all pairs (Oi(s|R1),
Ij(t|Rl)) of (s, t) along the path and sum up the related-
ness of these pairs [39]. Then, we normalize it by the
total number of out-neighbors of s and in-neighbors of t.
That means the relevance between s and t is the average
relevance between out-neighbors s and in neighbors of t.
Specially, the HeteSim score between two same-typed

objects s and t based on the self-relation I is

HeteSim s; t Ijð Þ ¼ δ s; tð Þ
where δ(s, t) = 1 if s sand t are same-typed objects, or
elseδ(s, t) = 0. Obviously, this is not appropriate for our
study. Therefore, Yang [50] re-defined HeteSim score on
self-relation as the similarity or association strength if s
and t is associated, otherwise as 0.
The meta-paths in heterogeneous networks have se-

mantic meanings, which make the relatedness of two
same-typed objects depending on the given relevance
path. Therefore, HeteSim has the ability to measure the
similarity of two nodes in a heterogeneous accurately.

Calculation of HeteSim scores
Definition 1. Transition probability matrix. SupposeA
and B are two object types in a heterogeneous network,
(WAB)n ×mis the adjacent matrix between typeA and B.
The transition probability matrix of A→ B can be
expressed as

UAB i; jð Þ ¼ WAB i; jð ÞPm
k¼1WAB i; kð Þ

VAB i; jð Þ ¼ WAB i; jð ÞPm
k¼1WAB k; jð Þ

Matrix UAB is the normalized results of matrix WAB

along the row vector and VAB is the normalized results

of matrix WABalong the column vector. It is easy to
prove that UAB is equal to V 0

BA.
Definition 2. Reachable probability matrix. In a het-

erogeneous network, given an arbitrary relevance path P
=A1A2⋯Al + 1and two objects s ∈A1andt ∈Al + 1, a reach-
able probability matrix for path P =A1A2⋯Al + 1is de-
fined as,

RP ¼ UA1A2UA2A3⋯UAlAlþ1

Objects s and t will meet at the middle type node
when s follows along the path and t goes against the
path. When the length of path P is even, s and t will
meet at the middle of nodeA(l/2) + 1. The path P
= (A1A2⋯Al + 1) can be divided into two equal-length
parts as P = (PLPR),wherePL = (A1A2⋯Amid − 1Amid) and
PR = (AmidAmid + 1⋯Al + 1). Here mid = (l/2) + 1. When
the length of path P is odd, s and t will not be meet at
the same node. In this study, we adopt a compromised
method which is proposed by Zeng [42].
Finally, the HeteSim score between s(s ∈ R1. A1) and

t(t ∈ Rl. Al + 1) based on the path P is calculated as follows:

HeteSim s; t Pjð Þ ¼ HeterSim A1;Alþ1 PL; PRjð Þ
¼ UA1A2UA2A3⋯UAmid−1M

VMAmidþ1VAmidþ1Amidþ2⋯VAlAlþ1

¼ UA1A2UA2A3⋯UAmid−1MU
0
MAmidþ1

U 0
Amidþ1Amidþ2

⋯U 0
AlAlþ1¼ UA1A2UA2A3⋯UAmid−1Mð Þ

UAlAlþ1⋯UAmidþ1Amidþ2UMAmidþ1

� �0
¼ PMPLð Þ PMP−1

R

� �0
ð2Þ

where PMPL ¼ UA1A2UA2A3⋯UAmid−1Mand PMP−1
R
¼ UAlAlþ1

⋯UAmidþ1Amidþ2UMAmidþ1 . In the Eq. (2), the transition prob-
ability matrix of Ai→Aj, denotes as UAiA j , is the row
normalized matrix of adjacent matrixWAiA j , and the transi-
tion probability matrix ofAj→Ai, VAiA j is the column
normalized results of matrix WAiA j . The HeteSim score
between s and t along the path P can be expressed as

HeteSim s; t Pjð Þ ¼ PMPL s; :ð ÞPMP−1
R

t; :ð Þ

Definition 3. Normalization of HeteSim. The normal-
ized HeteSim score between two objects s and t based on
the relevance path P is

HeteSim s; t Pjð Þ ¼ PMPL s; :ð ÞPMP−1
R

t; :ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PMPL s; :ð Þk kp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PMP−1
R

t; :ð Þ
			 			r

As is stated by Shi [39], the normalized HeteSim is the
cosine of probability distributions of source object s and
target object t reaching the middle type objectM. The
HeteSim score ranges from 0 to 1.

Tian et al. BMC Systems Biology 2018, 12(Suppl 9):134 Page 127 of 134



Example for HeteSim
A heterogeneous network is shown in Fig.3. The hetero-
geneous network contains three object types. Here, we
show the procedure of measuring the HeteSim scores
between s1 and t1, t2 under the relevance path P = (SDT).
The path relevance path P = (SDT) can be divided two
parts PL = (SD) and PR = (DT).
The adjacency matrix WSD and WTD can be denoted as:

d1 d2 d3 d4

WSD ¼
s1
s2
s3

1 0 0 1
0 1 0 0
0 1 1 1

2
4

3
5

d1 d2 d3 d4

WTD ¼ t1
t2

1 0 0 0
1 1 1 0

� �

Then we normalize the above matrices along the row
vector. The transition probability matrix of S→D and
T→D can be represented as:

USD ¼
0:5 0 0 0:5
0 1 0 0
0 0:333 0:333 0:333

2
4

3
5

UTD ¼ 1 0 0 0
0:333 0:333 0:333 0

� �

According to the Eq. (2), the reachable matrices for PL
and PR are equivalent their transition probability matri-
ces, which is VDT ¼ U 0

TD [39]. Therefore, the HeteSim
scores for s1,t1 and s1,t2based on path P can be calcu-
lated as:

HeteSim s1; t1 Pjð Þ ¼ PMPL s1; :ð ÞPMP−1
R

t1; :ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PMPL s1; :ð Þk kp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PMP−1
R

t1; :ð Þ
			 			r

¼ USD 1; :ð Þ VDT 1; :ð Þð Þ
USD 1; :ð Þk k2 � VDT 1; :ð Þð Þk k2

¼ USD 1; :ð Þ UTD 1; :ð Þð ÞT
USD 1; :ð Þk k2 � UTD 1; :ð Þð Þk k2

¼ 0:707

HeteSim s1; t2 Pjð Þ ¼ PMPL s1; :ð ÞPMP−1
R

t2; :ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PMPL s1; :ð Þk kp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PMP−1
R

t2; :ð Þ
			 			r

¼ USD 1; :ð Þ VDT 2; :ð Þð Þ
USD 1; :ð Þk k2 � VDT 2; :ð Þð Þk k2

¼ USD 1; :ð Þ UTD 2; :ð Þð ÞT
USD 1; :ð Þk k2 � UTD 2; :ð Þð Þk k2

¼ 0:408

HeteSim_Drug_Disease method
In the drug-disease heterogeneous network used in this
study, there are different meta-paths connecting drugs
and disease. For example, a drug and a disease pheno-
type can be connected via “drug-disease phenotype” path
and “drug-drug-disease phenotype” path and so on. As
we know, these different meta-paths may have different
semantic meanings. e.g. “Drug-drug-disease phenotype”
path indicates that if a drug is associated with a disease,
then other drugs similar to the drug can be regard as the
potential drugs associated with the disease. “Drug-disea-
se-disease” path means that if a disease is associated
with a drug, the other diseases similar to the disease will
be associated with the drug. Next, we will give a system-
atic introduction to measure the similarity between
drugs and diseases connecting by meta-paths.
The proposed method HSDD employs HeteSim to

compute the similarity of drugs and diseases in the
drug-disease heterogeneous network. Usually, scores of
different meta-paths are combined with a constant that
dampens contributions from longer path. HeteSim can
effectively measure the subtle semantics of meta-paths
and we need to combine HeteSim scores of different
paths with a constant β to dampen the contributions
from longer paths. In this paper, the parameter β needs
to be validated by experiments further.
The similarity of S(s, t) based on HSDD can be

expressed as

S s; tð Þ ¼
X∞
l¼2

βl−1 �
X
pi∈Ψl

HeteSim s; t pijð Þ

Here s and t denote one drug and one disease, respec-
tively.Ψldenotes the set of paths connecting the drug s
to the disease phenotype t with path length l. It is gener-
ally believed that a short path may contribute more than

Fig. 3 Example for computing HeteSim scores
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a long path. In this study, we only consider the
meta-paths with length less than five for HSDD. All the
paths that used to measure the association between
drugs and diseases are listed in Table 2. There are total
14 paths used for HSDD.
Given a drug s and a disease phenotype t, the associ-

ation strength is measured by

S s; tð Þ ¼
X4
l¼2

βl−1 �
X
pi∈Ψl

HeteSim s; t pijð Þ
 !

¼ β� HeteSim s; t DrDrDijð Þ þ HeteSimðs; t DrDiDij Þð Þ
þβ2�ðHeteSim s; t DrDrDrDijð Þ þ HeteSim s; t DrDrDiDijð Þ
þHeteSim s; t DrDiDiDijð Þ þ HeteSim s; t DrDiDrDijð ÞÞ þ L

ð3Þ

Results
In this section, we firstly introduce the metrics used to
evaluate the performance of various prediction mea-
sures. Next, we will perform a comprehensive compari-
son between HSDD and other representative methods
using diseases with known and unknown drugs datasets.
After that, we will investigate the effect of parameter
βand path lengths on HSDD. At last, we conduct case
study to verify the effectiveness of HSDD in inferring
drug-disease associations.

Evaluation measures
Firstly, to evaluate the performance of different methods
systematically, we conduct a leave-one-out cross valid-
ation (LOOCV) experiment. For each drug, at each iter-
ation, one of its drug-disease associations is treat as the

test data and all the remaining associations as the train-
ing data. After performing prediction, each tested drug
ranked together with all other drugs in descending order
according to the predicted score. For each specific rank-
ing threshold, if the rank of the tested connection is
above the selected threshold, it is regarded as a true
positive. The number of true positive over all possible
drug-disease relationships is regarded as the true-posi-
tive rate corresponding to the specified threshold. On
the other hand, if the rank of an unknown connection is
above the threshold, it is regarded as a false positive.
True-positive rate and false-positive rate are computed
with varying ranking thresholds for the sake of con-
structing the receiver operating characteristic (ROC)
curve. Area under curve (AUC) represents the overall
performance of the algorithms.
Secondly, it is generally believed that the predicted

top-ranked results are also very important and useful in
practice. As a result, we compare the performances of all
prediction methods in term of the top hundred predicted
drugs. The specified top-rank thresholds refers to the
thresholds that used to count correctly retrieved
drug-disease associations. The specified top-rank thresh-
olds used in this article is discrete, which range from 0 to
1 with scale 0.1. The more true associations in the top
portions, the more effective the prediction method is.
Thirdly, meta-paths with different lengths have differ-

ent contributions to relatedness of drugs and diseases.
The parameter β in Eq. (3) can dampen the contribu-
tions of longer paths. In this study, we will systematically
evaluate its effect on HSDD and then tune its best value
by cross validations.
Lastly, we conduct a case study experiment, which

predicts top-ten related drugs for five common diseases
for seeking evidence from biomedical literature to verify
the effectiveness of HSDD.

Comparison with existing methods on disease with
known drugs
We compare HSDD with other four representative
methods: NBI [30], HGBI [34] and DrugNet [8], MBiRW
[33]. As is mentioned in previous section, NBI could
prioritize candidate drugs for a given target or prioritize
candidate targets for a given drug simultaneously. HGBI
predicted new drug-disease relationships in the newly
proposed three-layer model by using an information
flow-based method. DrugNet is also a network-based
drug repositioning method and able to predict both
drug-disease and disease-drug prioritization. MBiRW is
the state-of-the-art method and can infer potential novel
indications for drugs. In this study, we compare HSDD
with these four methods, by LOOCV experiment and de
novo drug–disease prediction analysis. The parameters

Table 2 Paths with length less than five

Path
lengths

Pathway
scheme

Pathway

2 DrDrDi drug→drug→disease

DrDiDi drug→disease→disease

3 DrDrDrDi drug→drug→drug→disease

DrDrDiDi drug→drug→disease→disease

DrDiDiDi drug→disease→disease→disease

DrDiDrDi drug→disease→drug→disease

4 DrDrDrDrDi drug→drug→drug→drug→disease

DrDrDrDiDi drug→drug→drug→disease→disease

DrDrDiDrDi drug→drug→disease→drug→disease

DrDrDiDiDi drug→drug→disease→disease→disease

DrDiDrDrDi drug→disease→drug→drug→disease

DrDiDrDiDi drug→disease→drug→disease→disease

DrDiDiDrDi drug→disease→disease→drug→disease

DrDiDiDiDi drug→disease→disease→disease→disease
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in HSDD are that the combined path is with length 2, 3,
4 and β equals 0.8.
We conduct the LOOCV experiment for predicting

drug-disease associations. In total, there are 1776
drug-disease associations involving 540 drugs and 306
diseases in this experiment. The ROC and AUC values
for all methods are presented in Fig. 4a. Method HSDD
performs best in the five methods overall. The AUC
value for HSDD is 0.8994, while those for methods NBI,
HGBI, DrugNet and MBiRW are 0.5824, 0.8376, 0.7717
and 0.8710, respectively.
Moreover, we further investigate the number of

correctly retrieved drug-disease associations. A true
drug-disease association is considered as correctly re-
trieved if the predicted ranking of this association is higher
than the specified top-rank threshold [33]. The results are
shown in Fig. 4b. Method HSDD significantly outperforms
the other four compared methods. For HSDD, 386 associ-
ations are predicted at the top 1, while the results for NBI,
HGBI, DrugNet and MBiRW are 15, 77, 69 and 346, re-
spectively. As for the top 10, top 20, top 50 and top 100
evaluation metric, HSDD also performs best, which is
followed by MBiRW. Therefore, HSDD can be more use-
ful in practice than other four approaches.

De novo drug–disease prediction
To evaluate the capability of HSDD in predicting poten-
tial indications for new drugs, we conduct the de novo
drug-disease prediction test. In this experiment, we se-
lect the drugs, which only have one associated disease.
There are totally 153 associations in this experiment to
evaluate the performance of HSDD by the capability to
recover the association. There are totally 153 drugs, 132
diseases, and 153 drug-disease associations used in this
experiment. At the same time, we also evaluate the

performance of NBI, HGBI, DrugNet and MBiRW. The
corresponding results have be presented in Fig. 5.
As is shown in Fig.5a. HSDD achieves an AUC of

0.8296, which outperforms other four methods in the
same experimental scenario. The AUC values for NBI,
HGBI, DrugNet and MBiRW are 0.5668, 0.7629, 0.7375
and 0.8163, respectively.
Moreover, we also investigate the number of correctly

retrieved drug-disease associations. The results are listed
in Fig. 5b. From the results, we can find that HSDD also
outperforms other four methods. For example, among
the 153 known drug-disease associations, HSDD
achieves 8 of them at the top 1, while the results for
NBI, HGBI, DrugNet and MBiRW is 1, 4, 3, and 6. For
top 10, HSDD successfully predicts 68 associations,
while the results for NBI, HGBI, DrugNet and MBiRW
are 17, 27, 22 and 56, respectively. Overall, all de novo
prediction results indicate that HSDD can achieve a
superior performance.

The effect of parameters on HSDD
In this section, we investigate the effect of parameterβon
HSDD. The parameter βdampens the contributions of
different length paths. Besides, some research has found
that the longer the path length is, the smaller the inhi-
biting factor is [51]. Therefore, we combine the value of
β and path lengths as shown in Table 3. The value of β
ranges from 0.1 to 1.0 with the scale 0.1. We divide the
relevance path into two types: combined path and inde-
pendent path. The combinations between β and different
path lengths are presented in Table 3. We conducted the
LOOCV experiment and calculated the AUC values
based on various combinations. The corresponding
results are shown in Table 3.
The results in Table 3 demonstrate that with value of

β ranging from 0.1 to 0.9 overall, the AUC values of

Fig.4 a ROC curves for predicting drug–disease associations based on various methods. b Number of correctly retrieved known drug–disease
associations for various rank thresholds
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combined path with length 2, 3, 4 gradually increase.
However, its AUC value is slightly decreased from 0.9 to
1.0. Therefore, HSDD performs best when β is at 0.9
and combined path is with length 2, 3, 4. For other path
combinations, the best value for β can also be obtained
from Table 3.
At the same time, we also evaluate the effect of path

combination on HSDD. Results in Table 3 show that
combined paths performs better than independent paths.
Combined path with length 2, 3, 4 achieves the best per-
formance comparing with other path combination. This
is because the combined path with length 2, 3, 4 has
more significant meanings than combined path with
length 2, 3 and combined path with length 3, 4. There-
fore, we can set β at 0.9 and select combined path with
length 2, 3, 4 as the best path combination for HSDD,
which can most effectively measure the associations be-
tween drugs and diseases. The phenomenon of AUC
variations with path combination is consistent with pre-
vious research on path-based algorithms [51].

Case studies
To verify the effectiveness of HSDD further, we will
utilize HSDD infer novel drug-disease associations. In
this experiment, we select five common diseases [12]
and then predict their related drugs using HSDD. These
five disease are Huntington disease (HD, OMIM
143100), Non–small-cell lung cancer (NSCLC, OMIM
211980), Alcohol dependence (AD, OMIM 103780),
Small-cell lung cancer (SCLC, OMIM 182280) and Poly-
substance abuse, Susceptibility to (PSAB, OMIM
606581). For each disease, we firstly obtain the known
drugs and then present the top ten predicted drugs,
which has shown in Table 4. We take Huntington dis-
ease as an example to explain the results of case study.
Huntington’s disease (HD), also known as Hunting-

ton’s chorea, is an autosomal-dominant, progressive neu-
rodegenerative disorder with a distinct phenotype and
can results in death of brain cells [52, 53]. In OMIM
database, HD has many phenotypes and here we select
141,300 as its phenotype to predict its related drugs.

Fig. 5 De novo drug–disease prediction. a ROC curves for predicting drug–disease associations based on various methods. b Number of correctly
retrieved known drug–disease associations for various rank thresholds

Table 3 The AUC values of HSDD under different combinations of parameters

β Path length combinations

2 3 4 2,3 3,4 2,3,4

0.1 0.7423 0.7313 0.6613 0.8495 0.8325 0.8525

0.2 0.7439 0.7320 0.6628 0.8506 0.8379 0.8596

0.3 0.7508 0.7387 0.6643 0.8521 0.8396 0.8612

0.4 0.7523 0.7411 0.6667 0.8645 0.8401 0.8659

0.5 0.7611 0.7434 0.6684 0.8702 0.8417 0.8728

0.6 0.7684 0.7460 0.6714 0.8761 0.8436 0.8862

0.7 0.7680 0.7487 0.6731 0.8799 0.8524 0.8934

0.8 0.7689 0.7534 0.6712 0.8831 0.8596 0.8983

0.9 0.7574 0.7423 0.6707 0.8834 0.8504 0.9096

1.0 0.7556 0.7422 0.6701 0.8829 0.8559 0.9048
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HSDD has predicted ten drugs for HD. Quetiapine
(DB01224) was studied in five consecutive patients with
Huntington’s disease in a long-term facility. These pa-
tients behave improvement of behavioral symptoms
without worsening of motor functioning [54]. Author
Paleacu designed an experiment of eleven HD patients
and the results clearly demonstrates that Olanzapine
(DB00334) is safe and is an effective treatment for the
behavioral disturbances and frequently for the chorea
seen in HD patients [55]. Besides, to evaluate the efficacy
and safety of Bupropion (DB01156) in the treatment of
apathy in Huntington’s disease (HD), Gelderblom
conducted a multicenter, randomized, double-blind,
placebo-controlled, prospective crossover trial [56]. The
results of the trail show that bupropion does not allevi-
ate apathy in HD. However, the author observed the
effects of participation/placebo, which document the
need for carefully controlled trials. For other diseases,
the predicted drugs have been presented in Table 4. In
this experiment, when measuring HeteSim scores of
drug and disease pairs, we utilize all the information in
the network including all the known drugs. Most of pre-
dicted drugs predicted by HSDD are supported by litera-
ture, which indicates its good performance.

Discussion
In this study, we proposed HSDD to infer the associa-
tions between drugs and diseases.

Comparing with other effective methods, HSDD shows
best performance in all datasets. HSDD has the ability to
capture the sematic meaning of meta-paths in the hetero-
geneous network. Besides, the experimental results show
that HDSS performs best with the combined path length
2, 3 and 4. This is because this conbined path can extract-
ing much more meaningful meta-path from the
drug-disease heterogeneous network than the other paths.
In the end, the results of HSDD on case studies indicate
its good performance, which is validated by literature.

Conclusions
Drug repositioning is a promising and efficient way to
develop the associations of drugs and diseases. With the
rise of precision medicine, drug repositioning will play a
more and more important role. In this study, we pro-
posed a novel method called HSDD to research drug
repositioning problem. HSDD makes the best use of
meta-paths with different lengths in the drug-disease
heterogeneous and measures their association strength
based on HeteSim scores. The results in all the cross val-
idation experiments show that HSDD outperforms other
methods, which can effectively improve the prediction
performance. Besides, case studies for some typical dis-
eases indicate that HSDD is an efficient useful way to
predict potential drug-disease associations.
HSDD can be extended easily to other research as long

as the data is available and suitable. For example,
RNA-protein association prediction is another meaningful

Table 4 Case study results: the top ten predicted drugs for selected diseases

Disease Name Known drugs (DrugBank IDs) Top 10 ranked predictions

Huntington
OMIM ID: 143100

Baclofen (DB00181)
Tetrabenazine (DB04844)

Quetiapine (DB01224), Olanzapine (DB00334),
Bupropion (DB01156), Clozapine (DB00363),
Carbidopa(DB00190), Metyrosine(DB00765),
Phentermine (DB00191), Pethidine(DB00454),
Phenelzine(DB00780) Donepezil (DB00843)

NSCLC
OMIM ID:211980

Doxorubicin (DB00997) Daunorubicin (DB00694), Idarubicin (DB01177),
Valrubicin (DB00385), Oxymorphone (DB01192),
Anastrozole (DB01217), Oxycodone (DB00497),
Buprenorphine (DB00921), Levobunolol (DB01210),
Vincristine (DB00541), Carboplatin (DB00958)

AD
(OMIM ID: 104300)

Citalopram (DB00215),
Chlordiazepoxide (DB00475),
Acamprosate (DB00659),
Naltrexone (DB00704),
Disulfiram (DB00822),
Ondansetron (DB00904)

Galantamine (DB00674), Olanzapine (DB00334),
Risperidone(DB00734), Escitalopram (DB01175),
Terfenadine (DB00342), Alprazolam (DB00404)
Diazepam (DB00829), Lorazepam (DB00186),
Methimazole (DB00763), Mechlorethamine (DB00888)

SCLC
(OMIM ID: 182280)

Cisplatin (DB00515)
Methotrexate (DB00563)
Teniposide (DB00444)
Etoposide (DB00773)
Topotecan (DB01030)

Lithium (DB01356), Mechlorethamine (DB00888),
Carboplatin (DB00958), Epirubicin (DB00445),
Daunorubicin (DB00694), Doxorubicin (DB00997),
Irinotecan (DB00762), Codeine (DB00318),
Vinorelbine (DB00361), Frovatriptan (DB00998)

PSAB, (OMIM ID: 606581) None Citalopram (DB00215), Chlordiazepoxide (DB00475),
Acamprosate (DB00659), Naltrexone (DB00704),
Disulfiram (DB00822), Ondansetron (DB00904),
Niacin (DB00627), Clofibrate (DB00636),
Fenofibrate (DB01039), Gemfibrozil (DB01241)
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study. Similar to drug repositioning, network-based
methods have already achieved a good performance. Fur-
ther, the identification of microRNAs associated with
diseases is very important for understanding the patho-
genesis of diseases at the molecular level. HSDD can be
widely used in these applications.
At the same time, we plan to address two issues in fu-

ture work. First, we only consider the paths with length
less than five in this study. As we know, longer paths
also have significant meanings. Therefore, we should in-
vestigate the effect of other longer paths on HSDD more
comprehensive. Secondly, in this study we only consider
the direct associations of drugs and diseases, which only
utilizes two kinds of objects. Some research has put
drug-target relationships into drug repositioning. For ex-
ample, we can predict drug disease associations based
on a drug-target-disease three-layer- heterogeneous net-
work, which is inspired by data fusion.
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