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Abstract

Background: Mathematical modeling is a powerful tool to analyze, and ultimately design biochemical networks.
However, the estimation of the parameters that appear in biochemical models is a significant challenge. Parameter
estimation typically involves expensive function evaluations and noisy data, making it difficult to quickly obtain
optimal solutions. Further, biochemical models often have many local extrema which further complicates parameter
estimation. Toward these challenges, we developed Dynamic Optimization with Particle Swarms (DOPS), a novel
hybrid meta-heuristic that combined multi-swarm particle swarm optimization with dynamically dimensioned search
(DDS). DOPS uses a multi-swarm particle swarm optimization technique to generate candidate solution vectors, the
best of which is then greedily updated using dynamically dimensioned search.

Results: We tested DOPS using classic optimization test functions, biochemical benchmark problems and real-world
biochemical models. We performed T = 25 trials withN = 4000 function evaluations per trial, and compared the
performance of DOPS with other commonly used meta-heuristics such as differential evolution (DE), simulated
annealing (SA) and dynamically dimensioned search (DDS). On average, DOPS outperformed other common
meta-heuristics on the optimization test functions, benchmark problems and a real-world model of the human
coagulation cascade.

Conclusions: DOPS is a promising meta-heuristic approach for the estimation of biochemical model parameters in
relatively few function evaluations. DOPS source code is available for download under a MIT license at http://www.
varnerlab.org.
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Background
Mathematical modeling has evolved as a powerful
paradigm to analyze, and ultimately design complex bio-
chemical networks [1–5]. Mathematical modeling of bio-
chemical networks is often an iterative process. First,
models are formulated from existing biochemical knowl-
edge, and then model parameters are estimated using
experimental data [6–8]. Parameter estimation is typically
framed as a non-linear optimization problem wherein
the residual (or objective function) between experimental
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measurements and model simulations is minimized using
an optimization strategy [9]. Optimal parameter estimates
are then used to predict unseen experimental data. If the
validation studies fail, model construction and calibra-
tion are repeated iteratively until satisfactory results are
obtained. As our biological knowledge increases, model
formulation may not be as significant a challenge, but
parameter estimation will likely remain difficult.
Parameter estimation is a major challenge to the devel-

opment of biochemical models. Parameter estimation has
been a well studied engineering problem for decades
[10–13]. However, the complex dynamics of large bio-
logical systems and noisy, often incomplete experimen-
tal data sets pose a unique estimation challenge. Often
optimization problems involving biological systems are
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non-linear and multi-modal i.e., typical models have
multiple local minima or maxima [7, 9]. Non-linearity
coupled with multi-modality renders local optimization
techniques such as pattern search [14], Nelder-Mead
simplex methods [15], steepest descent or Levenberg-
Marquardt [16] incapable of reliably obtaining globally
optimal solutions as these methods often terminate at
local minimum. Though deterministic global optimiza-
tion techniques (for example algorithms based on branch
and bound) can handle non-linearity and multi-modality
[17, 18], the absence of derivative information, discontin-
uous objective functions, non-smooth regions or the lack
of knowledge about the objective function hampers these
techniques.
Meta-heuristics like Genetic Algorithms (GAs) [19],

Simulated Annealing (SA) [20], Evolutionary Program-
ming [21] and Differential Evolution (DE) [22–25] have
all shown promise on non-linear multi-modal prob-
lems [26]. These techniques do not make any assump-
tions nor do they require, a priori information about
the structure of the objective function. Meta-heuristics
are often very effective at finding globally optimal or
near optimal solutions. For example, Mendes et al.
used SA to estimate rate constants for the inhibition
of HIV proteinase [27], while Modchang et al. used a
GA to estimate parameters for a model of G-protein-
coupled receptor (GPCR) activity [28]. Parameter esti-
mates obtained using the GA stratified the effectiveness of
two G-protein agonists, N6-cyclopentyladenosine (CPA)
and 5’-N-ethylcarboxamidoadenosine (NECA). Tashkova
et al. compared different meta-heuristics for parameter
estimation on a dynamic model of endocytosis; DE was
themost effective of the approaches tested [29]. Banga and
co-workers have also successfully applied scatter-search to
estimate model parameters [30–32]. Hybrid approaches,
which combine meta-heuristics with local optimization
techniques, have also become popular. For example, Egea
et al. developed the enhanced scatter search (eSS) method
[32], which combined scatter and local search methods,
for parameter estimation in biological models [33]. How-
ever, despite these successes, a major drawback of most
meta-heuristics remains the large number of function
evaluations required to explore parameter space. Perform-
ing numerous potentially expensive function evaluations
is not desirable (and perhaps not feasible) for many types
of biochemical models. Alternatively, Tolson and Shoe-
maker found, using high-dimensional watershed mod-
els, that perturbing only a subset of parameters was an
effective strategy for estimating parameters in expensive
models [34]. Their approach, called Dynamically Dimen-
sioned Search (DDS), is a simple stochastic single-solution
heuristic that estimates nearly optimal solutions within a
specified maximum number of function (or model) eval-
uations. Thus, while meta-heuristics are often effective at

estimating globally optimal or nearly optimal solutions,
they require a large number of function evaluations to
converge to a solution.
In this study, we developed Dynamic Optimization with

Particle Swarms (DOPS), a novel hybrid meta-heuristic
that combines the global search capability of multi-swarm
particle swarm optimization with the greedy refinement
of dynamically dimensioned search (DDS). The objective
of DOPS is to obtain near optimal parameter estimates
for large biochemical models within a relatively few func-
tion evaluations. DOPS uses multi-swarm particle swarm
optimization to generate nearly optimal candidate solu-
tions, which are then greedily updated using dynamically
dimensioned search. While particle swarm techniques are
effective, they have the tendency to become stuck in small
local regions and lose swarm diversity, so we combined
multi-swarm particle optimization with DDS to escape
these local regions and continue towards better solutions
[35]. We tested DOPS using a combination of classic opti-
mization test functions, biochemical benchmark prob-
lems and real-world biochemical models. First, we tested
the performance of DOPS on the Ackley and Rosenbrock
functions, and published biochemical benchmark prob-
lems. Next, we used DOPS to estimate the parameters
of a model of the human coagulation cascade. On aver-
age, DOPS outperformed other common meta-heuristics
like differential evolution, a genetic algorithm, CMA-
ES (Covariance Matrix Adaptation Evolution Strategy),
simulated annealing, single-swarm particle swarm opti-
mization, and dynamically dimensioned search on the
optimization test functions, benchmark problems and the
coagulation model. For example, DOPS recovered the
nominal parameters for the benchmark problems using an
order of magnitude fewer function evaluations than eSS
in all cases. It also produced parameter estimates for the
coagulation model that predicted unseen coagulation data
sets. Thus, DOPS is a promising hybrid meta-heuristic
for the estimation of biochemical model parameters in
relatively few function evaluations. However, the relative
performance of DOPS should be evaluated cautiously;
only naive implementations of the other approaches were
tested. Thus, it is possible that other optimized meta-
heuristics could outperform DOPS on both test and real-
world problems.

Results
DOPS explores parameter space using a combination of
global methods.
DOPS combines a multi-swarm particle swarm method
with the dynamically dimensioned search approach of
Shoemaker and colleagues (Fig. 1). The goal of DOPS is
to estimate optimal or near optimal parameter vectors
for high-dimensional biological models within a specified
number of function evaluations. Toward this objective,
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Fig. 1 Schematic of the dynamic optimization with particle swarms (DOPS) approach. Top: Each particle represents an N dimensional parameter
vector. Particles are given randomly generated initial solutions and grouped into different sub-swarms. Within each swarm the magnitude and
direction of the movement a particle is influenced by the position of the best particle and also by its own experience. After every g number of
function evaluations the particles are mixed and randomly assigned to different swarms. When the error due to the global best particle (best particle
amongst all the sub-swarms) does not drop over a certain number of function evaluations, the swarm search is stopped and the search switches to
a Dynamically Dimensioned Search with global best particle as the initial solution vector or candidate vector. Bottom: The candidate vector
performs a greedy global search for the remaining number of function evaluations. The search neighborhood is dynamically adjusted by varying the
number of dimensions that are perturbed (in black) in each evaluation step. The probability that a dimension is perturbed decreases as the number
of function evaluations increase

DOPS begins by using a multi-swarm particle swarm
search and then dynamically switches, using an adap-
tive switching criteria, to the DDS approach. The parti-
cle swarm search uses multiple sub-swarms wherein the
update to each particle (corresponding to a parameter vec-
tor estimate) is influenced by the best particle amongst
the sub-swarm, and the current globally best particle.
Particle updates occur within sub-swarms for a certain
number of function evaluations, after which the sub-
swarms are reorganized. This sub-swarmmixing is similar

to the regrouping strategy described by Zhao et al. [36].
DOPS switches out of the particle swarm phase based
upon an adaptive switching criteria that is a function of
the rate of error convergence. If the error represented by
the best particle does not decrease for a threshold num-
ber of function evaluations, DOPS switches automatically
to the DDS search phase. The DDS search is initialized
with the globally best particle from the particle swarm
phase, thereafter, the particle is greedily updated by per-
turbing a subset of dimensions for the remaining number
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of function evaluations. The identity of the parameters
perturbed is chosen randomly, with fewer parameters
perturbed the higher the number of function evaluations.

DOPSminimized benchmark problems using fewer
function evaluations.
On average, DOPS performed similarly or outperformed
four other meta-heuristics for the Ackley and Rastrigin
test functions (Fig. 2). The Ackley and Rastrigin functions
both have multiple local extrema and attain a global mini-
mum value of zero. In each case, the maximum number of
function evaluations was fixed at N = 4000, and T = 25
independent experiments were run with different initial
parameter vectors. DOPS found optimal or near optimal
solutions for both the 10-dimensional Ackley (Fig. 2a) and
Rastrigin (Fig. 2b) functions within the budget of func-
tion evaluations. In each of the 10-dimensional cases,
other meta-heurtistics such as DDS and DE also per-
formed well. However, DOPS consistently outperformed
all other approaches tested. This performance difference
was more pronounced as the dimension of the search
problem increased; for a 300-dimensional Rastrigin func-
tion, DOPS was the only approach to find an optimal or
near optimal solution within the function evaluation bud-
get (Fig. 2b). Taken together, DOPS performed at least
as well as other meta-heuristics on small dimensional
test problems, but was especially suited to large dimen-
sional search spaces. Next, we tested DOPS on benchmark
biochemical models of varying complexity.
Villaverde and co-workers published a set of benchmark

biochemical problems to evaluate parameter estimation
methods [33]. They ranked the example problems by com-
putational cost from most to least expensive. We evalu-
ated the performance of DOPS on problems from the least
and most expensive categories. The least expensive prob-
lem was a metabolic model of Chinese Hamster Ovary
(CHO) with 35 metabolites, 32 reactions and 117 param-
eters [37]. The biochemical reactions were modeled using
modular rate laws and generalized Michaelis–Menten
kinetics. On the other hand, the expensive problem was
a genome scale kinetic model of Saccharomyces cerevisiae
with 261 reactions, 262 variables and 1759 parameters
[38]. In both cases, synthetic time series data gener-
ated with known parameter values, was used as training
data to estimate the model parameters. For the Saccha-
romyces cerevisiaemodel, the time series data consisted of
44 observables, while for the CHO metabolism problem
the data corresponded to 13 different metabolite mea-
surement sets. The number of function evaluations was
fixed at N = 4000, and we trained both models against
the synthetic experimental data. DOPS produced good
fits to the synthetic data (Additional file 1: Figure S1 and
Additional file 2: Figure S2), and recapitulated the nom-
inal parameter values using only N ≤ 4000 function

Fig. 2 Performance of DOPS and other meta-heuristics for the Ackley
and Rastrigin functions. a: Mean scaled error versus the number of
function evaluations for the 10-dimensional Ackley function. DOPS,
DDS and ESS find optimal or near optimal solutions within the
specified number of function evaluations. b: Mean scaled error versus
the number of function evaluations for the 10-dimensional Rastrigin
function. Nearly all the techniques find optimal or near optimal
solutions within the specified number of function evaluations. c:
Mean scaled error versus the number of function evaluations for the
300-dimensional Rastrigin function. DOPS is the only algorithm that
finds an optimal or near optimal solution within the specified number
of function evaluations. In all cases, the maximum number of function
evaluations wasN = 4000. Mean and standard deviation were
calculated over T = 25 trials. A star denotes that the average value
was less than 1E-6

evaluations (Additional file 3: Figure S3). On the other
hand, the enhanced scatter search (eSS) with a local
optimizer method, took on order 105 function evalua-
tions for the same problems. DOPS required a comprable
amount of time (Additional file 4: Figure S4), faster con-
vergence (Additional file 5: Figure S5 and Additional file 6:
Figure S6), and also had lower variability in the best
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value obtained (Additional file 7: Figure S7) across multi-
ple runs when compared to other meta-heuristics. Thus,
DOPS estimated the parameters in benchmark biochem-
ical models, and recovered the original parameters from
the synthetic data, using fewer function evaluations. Next,
we compared the performance of DOPS with four other
meta-heuristics for a model of the human coagulation
cascade.

DOPS estimated the parameters of a human coagulation
model.
Coagulation is an archetype biochemical network that is
highly interconnected, containing both negative and pos-
itive feedback (Fig. 3). The biochemistry of coagulation,

though complex, has been well studied [39–45], and reli-
able experimental protocols have been developed to inter-
rogate the system [46–49]. Coagulation is mediated by
a family proteases in the circulation, called factors and
a key group of blood cells, called platelets. The central
process in coagulation is the conversion of prothrom-
bin (fII), an inactive coagulation factor, to the master
protease thrombin (FIIa). Thrombin generation involves
three phases, initiation, amplification and termination.
Initiation requires a trigger event, for example a ves-
sel injury which exposes tissue factor (TF), which leads
to the activation of factor VII (FVIIa) and the forma-
tion of the TF/FVIIa complex. Two converging pathways,
the extrinsic and intrinsic cascades, then process and

Fig. 3 Schematic of the extrinsic and intrinsic coagulation cascade. Inactive zymogens upstream (grey) are activated by exposure to tissue factor
(TF) following vessel injury. Tissue factor and activated factor VIIa (FVIIa) form a complex that activates factor X (fX) and IX (fIX). FXa activates
downstream factors including factor VIII (fVIII) and fIX. Factor V (fV) is primarily activated by thrombin (FIIa). In addition, we included a secondary fV
activation route involving FXa. FXa and FVa form a complex (prothrombinase) on activated platelets that converts prothrombin (fII) to FIIa. FIXa and
FVIIIa can also form a complex (tenase) on activated platelets which catalyzes FXa formation. Thrombin also activates upstream coagulation factors,
forming a strong positive feedback ensuring rapid activation. Tissue factor pathway inhibitor (TFPI) downregulates FXa formation and activity by
sequestering free FXa and TF-FVIIa in a FXa-dependent manner. Antithrombin III (ATIII) inhibits all proteases. Thrombin inhibits itself binding the
surface protein thrombomodulin (TM). The IIa-TM complex catalyzes the conversion of protein C (PC) to activated protein C (APC), which attenuates
the coagulation response by the proteolytic cleavage of fV/FVa and fVIII/FVIIIa
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amplify this initial coagulation signal. There are several
control points in the cascade that inhibit thrombin for-
mation, and eventually terminate thrombin generation.
Tissue Factor Pathway Inhibitor (TFPI) inhibits upstream
activation events, while antithrombin III (ATIII) neutral-
izes several of the proteases generated during coagulation,
including thrombin. Thrombin itself also inadvertently
plays a role in its own inhibition; thrombin, through inter-
action with thrombomodulin, protein C and endothelial
cell protein C receptor (EPCR), converts protein C to
activated protein C (APC) which attenuates the coagu-
lation response by proteolytic cleavage of amplification
complexes. Termination occurs after either prothrombin
is consumed, or thrombin formation is neutralized by
inhibitors such as APC or ATIII. Thus, the human coag-
ulation cascade is an ideal test case; coagulation is chal-
lenging because it contains both fast and slow dynamics,
but also accessible because of the availability of com-
prehensive data sets for model identification and vali-
dation. In this study, we used the coagulation model of
Luan et al. [49], which is a coupled system of non-linear
ordinary differential equations where biochemical inter-
actions were modeled using mass action kinetics. The
Luan model contained 148 parameters and 92 species
and has been validated using 21 published experimental
datasets.
DOPS estimated the parameters of a human coagu-

lation model for TF/VIIa initiated coagulation without

anticoagulants (Fig. 4). The objective function was an
unweighted linear combination of two error functions,
representing coagulation initiated with different concen-
trations of TF/FVIIa (5pM, 5nM) [46]. The number of
function evaluations was restricted toN = 4000 for each
algorithm we tested, and we performed T = 25 trials
of each experiment to collect average performance data
(Table 1). DOPS converged faster and had a lower final
error compared to the other algorithms (Fig. 5). Within
the first 25% of function evaluations, DOPS produced a
rapid drop in error followed by a slower but steady decline
(Additional file 8: Figure S8b). Approximately between
500-1000 function evaluations DOPS switched to the
dynamically dimensioned search phase, however this
transition varied from trial to trial since the switch was
based upon the local convergence rate. On average, DOPS
minimized the coagulation model error to a greater extent
than the other meta-heuristics. However, it was unclear if
the parameters estimated by DOPS had predictive power
on unseen data. To address this question, we used the final
parameters estimated by DOPS to simulate data that was
not used for training (coagulation initiated with 500pM,
50pM, and 10pM TF/VIIa). The optimal or near optimal
parameters obtained by DOPS predicted unseen coagula-
tion datasets (Fig. 6). The normalized standard error for
the coagulation predictions was consistent with the train-
ing error, with the exception of the 50pM TF/VIIa case
which was a factor 2.65 worse (Table 2). However, this
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Fig. 4Model fits on experimental data using DOPS. The model parameters were estimated using DOPS. Solid black lines indicate the simulated
mean thrombin concentration using parameter vectors from 25 trials. The grey shaded region represents the 99% confidence estimate of the mean
simulated thrombin concentration. The experimental data is reproduced from the synthetic plasma assays of Mann and co-workers. Thrombin
generation is initiated by adding Factor TF/VIIa (5nM (blue) and 5pM (red)) to synthetic plasma containing 200 μmol/L of phospholipid vesicles
(PCPS) and a mixture of coagulation factors (II,V,VII,VIII,IX,X and XI) at their mean plasma concentrations
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Table 1 Table with optimization settings and results for the
coagulation problem, the benchmarks and test functions using
DOPS

Coagulation B1 B4 Ackley Rastrigin

Evaluations 4000 4000 4000 4000 4000

Lower Bound 0.001.pnom 0.2.pnom 0.2.pnom -15 -5.12

Upper Bound 1000.pnom 5.pnom 5.pnom 30 5.12

CPU Time 10.1 hrs 38.3 hrs 6.2 min 2.8 s 2.6 s

Scaled initial error 1.0 1.0 1.0 1.0 1.0

Scaled final error < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Scaled nominal error 0.42 0.1 < 0.01 0 0

For each problem the bounds on the parameter vector, the total number of
function evaluations, the best initial objective value and the best final objective
value are specified. Here pnom indicates the nominal or true parameter vector of
the model. Nominal objective value represents the objective value using the true
parameter vector or the nominal parameter vector. The CPU time is the time taken
for the problem on a 2.4GHz Intel Xeon Architecture running Matlab 2014b

might be expected as coagulation initiation with 50pM
TF/FVIIa was the farthest away from the training con-
ditions. Taken together, DOPS estimated parameter sets
with predictive power on unseen coagulation data using
fewer function iterations than other meta-heuristics.
Next, we explored how the number of sub-swarms and

the switch to DDS influenced the performance of the
approach.

Phase switching was critical to DOPS performance.
A differentiating feature of DOPS is the switch to
dynamically dimensioned search following stagnation
of the initial particle swarm phase. We quantified
the influence of the number of sub-swarms and the
switch to DDS on error convergence by comparing
DOPS with and without DDS for different numbers of
sub-swarms (Fig. 7). We considered multi swarm particle
swarm optimization with and without the DDS phase for
N = 4000 function evaluations and T = 25 trials on
the coagulation model. We used one, two, four, five and
eight sub-swarms, with a total of 40 particles divided
evenly amongst the swarms. Hence, we did not consider
swarm numbers of three and seven. All other algorithm
parameters remained the same for all cases. Generally, the
higher sub-swarm numbers converged in fewer function
evaluations, where the optimum particle partitioning was
in the neighborhood of five sub-swarms. However, the
difference in convergence rate was qualitatively sim-
ilar for four, five and eight sub-swarms, suggesting
there was an optimal number of particles per swarm
beyond which there was no significant advantage. The
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Fig. 5 Error convergence rates of the nine different algorithms on the coagulation model. The objective error is the mean over T = 25 trials. DOPS,
SA, PSO and DOPS-PSO have the steepest drop in error during first 300 function evaluations. Thereafter the error drop in DDS and SA remains nearly
constant whereas DOPS continues to drops further. In the alloted budget of function evaluations ESS produces a modest reduction in error. At the
end of 4000 function evaluations DOPS attains the lowest error
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Fig. 6Model predictions on unseen experimental data using parameters obtained from DOPS. The parameter estimates that were obtained using
DOPS were tested against data that was not used in the model training. Solid black lines indicate the simulated mean thrombin concentration using
parameter vectors from T = 25 trials. The grey shaded region represents the 99% confidence estimate of the mean simulated thrombin
concentration. The experimental data is reproduced from the synthetic plasma assays of Mann and co-workers. Thrombin generation is initiated by
adding Factor VIIa-TF (500pM - blue, 50pM - pink and 10pM - purple, respectively) to synthetic plasma containing 200 μmol/L of phospholipid
vesicles (PCPS) and a mixture of coagulation factors (II,V,VII,VIII,IX,X and XI) at their mean plasma concentrations

multi-swarm particle swarm optimization stagnated after
25% of the available function evaluations irrespective
of the number of sub-swarms. However, DOPS (with
five sub-swarms) switched to DDS after detecting the
stagnation. The DDS phase refined the globally best
particle to produce significantly lower error on aver-
age when compared to multi-swarm particle swarm
optimization alone. Thus, the automated switching strat-
egy was critical to the overall performance of DOPS.
However, it was unclear if multiple strategy switches could
further improve performance.

Table 2 Error analysis for the human coagulation model

TF/FVIIa concentration Normalized S.E. Category

5 nM 0.1336 Training

500 pM 0.2242 Prediction

50 pM 0.3109 Prediction

10 pM 0.2023 Prediction

5 pM 0.1170 Training

The coagulation model was trained on coagulation initiated with TF/FVIIa at 5 nM
and the 5 pM to obtain the optimal parameters. Using these optimal parameters,
coagulation dynamics were predicted for varying initiator concentrations (500 pM,
50 pM and 10 pM). Model agreement with measurements was quantified using
normalized squared error. The normalized squared error is defined as
N.S.E. = (1/max(X)) ∗ (‖(Y,X)‖/sqrt(N)) where X is the experimental data, Y is the
model simulation data interpolated onto the experimental time scale and N is the
total number of experimental time points

We explored the performance of DOPS if it was
permitted to switch between the PSO (Particle Swarm
Optimization) and DDSmodes multiple times. This mode
(msDOPS) had comparable performance to DOPS on
10-d Ackley and Rastrigin functions, as well as on the
300-dimensional Rastrigin function. However, msDOPS
performed better than DOPS on the CHO metabolism
problem (Fig. 8a), with the average functional value being
nearly half that of DOPS. To further distinguish DOPS
from msDOPS, we compared the performance of each
algorithm on the Eggholder function, a difficult function
to optimize given its multiple minima [50]. msDOPS out-
performed DOPS on the Eggholder function, however,
neither version reached the true minimum at -959.6407
on any trial with a budget of N = 4000 function eval-
uations (Fig. 8b). We also explored the performance of
msDOPS and DOPS on the 100 dimensional Styblinksi-
Tang function [51] (Fig. 8c). In this comparison, msDOPS
significantly outperformed DOPS, finding the true min-
imum before exhausting its function evaluation budget,
while DOPS does not reach the minimum. Since the per-
formance of msDOPS was promising on these problems,
wemeasured its performance on the coagulation problem.
Surprisingly, DOPS performed similarly to msDOPS on
the coagulation problem (Fig. 8d); the final average objec-
tive value for DOPS reached 0.9413% of the initial func-
tional value, compared to 0.9428% for msDOPS. Taken
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Fig. 7 Influence of the switching strategy and sub-swarms on DOPS
performance for the coagulation model. DOPS begins by using a
particle swarm search and then dynamically switches (switch region),
using an adaptive switching criteria, to the DDS search phase. We
compared the performance of DOPS with and without DDS for
different sub-swarm searches to quantify the effect of number of
sub-swarms and DDS. We used one, two, four, five and eight
sub-swarms, with a total of 40 particles divided evenly amongst the
swarms. The results presented are the average of T = 25 trials with
N = 4000 function evaluations each. The convergence rates with
higher swarm numbers is typically higher but there is no pronounced
difference amongst four, five and eight. The multi-swarm with
without DDS saturates while DOPS shows a rapid drop due to a
switch to the DDS phase

together, these results indicate that switching plays a key
role in DOPS’s performance and that for some classes of
problems, multiple switching between modes produces a
faster drop in objective value. However, the coagulation
model results suggested the advantage of msDOPS was
problem specific.

Discussion
In this study, we developed dynamic optimization with
particle swarms (DOPS), a novel meta-heuristic for
parameter estimation. DOPS combined multi-swarm par-
ticle swarm optimization, a global search approach, with
the greedy strategy of dynamically dimensioned search to
estimate optimal or nearly optimal solutions in a fixed
number of function evaluations. We tested the perfor-
mance of DOPS and seven widely used meta-heuristics
on the Ackley and Rastrigin test functions, a set of
biochemical benchmark problems and a model of the
human coagulation cascade. We also compared the per-
formance of DOPS to enhanced Scatter Search (eSS),
another widely used meta-heuristic approach. As the

number of parameters increased, DOPS outperformed
the other meta-heuristics, generating optimal or nearly
optimal solutions using significantly fewer function eval-
uations compared with the other methods. We tested the
solutions generated by DOPS by comparing the estimated
and true parameters in the benchmark studies, and by
using the coagulationmodel to predict unseen experimen-
tal data. For both benchmark problems, DOPS retrieved
the true parameters in significantly fewer function eval-
uations than other meta-heuristics. For the coagulation
model, we used experimental coagulation measurements
under two different conditions to estimate optimal or
nearly optimal parameters. These parameters were then
used to predict unseen coagulation data; the coagula-
tion model parameters estimated by DOPS predicted the
correct thrombin dynamics following TF/FVIIa induced
coagulation without anticoagulants. Lastly, we showed the
average performance of DOPS improved when combined
with dynamically dimensioned search phase, compared to
an identical multi-swarm approach alone, and that multi-
ple mode switches could improve performance for some
classes of problems. Taken together, DOPS is a promising
meta-heuristic for the estimation of parameters in large
biochemical models.
Meta-heuristics can be effective tools to estimate opti-

mal or nearly optimal solutions for complex, multi-modal
functions. However, meta-heuristics typically require a
large number of function evaluations to converge to
a solution compared with techniques that use deriva-
tive information. DOPS is a combination of particle
swarm optimization, which is a global search method,
and dynamically dimensioned search, which is a greedy
evolutionary technique. Particle swarm optimization uses
collective information shared amongst swarms of com-
putational particles to search for global extrema. Several
particle swarm variants have been proposed to improve
the search ability and rate of convergence. These vari-
ations involve different neighborhood structures, multi-
swarms or adaptive parameters. Multi-swarm particle
swarm optimization with small particle neighborhoods
has been shown to be better in searching on complex
multi-modal solutions [36]. Multi-swarm methods gen-
erate diverse solutions, and avoid rapid convergence to
local optima. However, at least for the coagulation prob-
lem used in this study, multi-swarm methods stagnated
after approximately 25% of the available function evalua-
tions; only the introduction of dynamically dimensioned
search improved the rate of error convergence. Dynam-
ically dimensioned search, which greedily perturbs only
a subset of parameter dimensions in high dimensional
parameter spaces, refined the globally best particle and
produced significantly lower error on average when com-
pared to multi-swarm particle swarm optimization alone.
However, dynamically dimensioned search, starting from
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Fig. 8 Comparison of DOPS and Multiswitch DOPS Performance of DOPS and Multiswitch DOPS on the CHO metabolism problem (a), the
Eggholder function (b), the 100 dimensional Styblinksi-Tang function (c) and the coagulation problem (d). Both methods have the same initial
decrease in error, but as the number of function evaluations increases, multiswitch DOPS produces a larger decrease in error. The results presented
are the average of T = 250 trials with for the CHO metabolism problem and T = 250 trials on the Eggholder and Styblinksi-Tang functions with
N = 4000 function evaluations each, and T = 25 trials for the coagulation problem

a initial random parameter guess, was not as effective on
average as DOPS. The initial solutions generated by the
multi swarm search had a higher propensity to produce
good parameter estimates when refined by dynamically
dimensioned search. Thus, our hybrid combination of
two meta-heuristics produced better results than either
constituent approach, and better results than other meta-
heuristic approaches on average. This was true of not
only the convergence rate on the coagulation problem,
but also the biochemical benchmark problems; DOPS
required two-orders of magnitude fewer function evalu-
ations compared with enhanced Scatter Search (eSS) to
estimate the biochemical benchmark model parameters.
What remains to be explored is the performance of DOPS
compared to techniques that utilize derivative informa-
tion, either on their own or in combination with other
meta-heuristics, and the performance of DOPS in real-
world applications compared with other meta-heuristics

such as hybrid genetic algorithms e.g., see [52]. Gradient
methods perform well on smooth convex problems which
have either a closed form of the gradient of the function
being minimized, or a form that can be inexpensively esti-
mated numerically. While the biological problems DOPS
is intended for often do not have this form, perhaps
the solutions could be further improved by following
(or potentially replacing) the DDS phase with a gradient
based technique when applicable. Taken together, the
combination of particle swarm optimization and dynami-
cally dimensioned search performed better than either of
these constituent approaches alone, and required fewer
function evaluations compared with other commonmeta-
heuristics.

Conclusions
DOPS performed well on many different systems with no
pre-optimization of algorithm parameters, however there
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are many research questions that should be pursued fur-
ther. DOPS comfortably outperformed existing, widely
used meta-heuristics for high dimensional global opti-
mization functions, biochemical benchmark models and
a model of the human coagulation system. However, it is
possible that highly optimized versions of common meta-
heuristics could surpass DOPS; we should compare the
performance of DOPS with optimized versions of the
other common meta-heuristics on both test and real-
world problems to determine if a performance advantage
exists in practice. Next, DOPS has a hybrid architec-
ture, thus the particle swarm phase could be combined
with other search strategies such as local derivative based
approaches to improve convergence rates. We could also
consider multiple phases beyond particle swarm and
dynamically dimensioned search, for example switching
to a gradient based search following the dynamically
dimensioned search phase. Lastly, we should update
DOPS to treat multi-objective problems. The identifi-
cation of large biochemical models sometimes requires
training using qualitative, conflicting or even contradic-
tory data sets. One strategy to address this challenge
is to estimate experimentally constrained model ensem-
bles using multiobjective optimization. Previously, we
developed Pareto Optimal Ensemble Techniques (POETs)
which integrates simulated annealing with Pareto opti-
mality to identify models near the optimal tradeoff surface
between competing training objectives [53]. Since DOPS
consistently outperformed simulated annealing on both
test and real-world problems, we expect a multi-objective
form of DOPS would more quickly estimate solutions
which lie along high dimensional trade-off surfaces.

Methods
Optimization problem formulation.
Model parameters were estimated by minimizing the dif-
ference between model simulations and E experimental
measurements. Simulation error is quantified by an objec-
tive function K (p) (typically the Euclidean norm of the
difference between simulations and measurements) sub-
ject to problem and parameter constraints:

min
p

K(p) =
E∑

i=1

(
gi(ti, x,p,u) − yi

)2

subject to ẋ = f(t, x(t,p),u(t),p)

x(t0) = x0
c(t, x,p,u) � 0
pL � p � pU

(1)

The term K(p) denotes the objective function (sum of
squared error), t denotes time, gi(ti, x,p,u) is the model
output for experiment i, while yi denotes the measured
value for experiment i. The quantity x (t,p) denotes the

state variable vector with an initial state x0, u(t) is a
model input vector, f(t, x(t,p),u(t),p) is the system of
model equations (e.g., differential equations or algebraic
constraints) and p denotes the model parameter vec-
tor (quantity to be estimated). The parameter search (or
model simulations) can be subject to c(t, x,p,u) linear or
non-linear constraints, and parameter bound constraints
where pL and pU denote the lower and upper parameter
bounds, respectively. Optimal model parameters are then
given by:

p∗ = argmin
p

K (p) (2)

In this study, we considered only parameter bound
constraints, and did not include the c(t, x,p,u) linear
or non-linear problem constraints. However, additional
these constraints can be handled, without changing the
approach, using a penalty function method.

Dynamic optimization with particle swarms (DOPS).
DOPS combines multi-swarm particle swarm optimiza-
tion with dynamically dimensioned search (Fig. 1) and
(Algorithm 1). The goal of DOPS is to estimate optimal
or near optimal parameter vectors for high-dimensional
biological models within a specified number of function
evaluations. Toward this objective, DOPS begins by using
a particle swarm search and then dynamically switches,
using an adaptive switching criteria, to a DDS search
phase.

Phase 1: Particle swarm phase.
Particle swarm optimization is an evolutionary algorithm
that uses a population of particles (solutions) to find
an optimal solution [54, 55]. Each particle is updated
based on its experience (particle best) and the experi-
ence of all other particles within the swarm (global best).
The particle swarm phase of DOPS begins by randomly
initializing a swarm of K-dimensional particles (repre-
sented as zi), wherein each particle corresponded to a
K-dimensional parameter vector. After initialization, par-
ticles were randomly partitioned into k equally sized sub-
swarms S1, . . . ,Sk . Particles within each sub-swarm Sk
were updated according to the rule:

zi,j = θ1,j−1zi,j−1+θ2r1
(
Li − zi,j−1

)+θ3r2
(
Gk − zi,j−1

)

(3)

where (θ1, θ2, θ3) were adjustable parameters, Li denotes
the best solution found by particle i within sub-swarm Sk
for function evaluation 1 → j − 1, and Gk denotes the
best solution found over all particles within sub-swarm
Sk . The quantities r1 and r2 denote uniform random vec-
tors with the same dimension as the number of unknown
model parameters (K × 1). Equation 3 is similar to the
general particle swarm update rule, however, it does not
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Algorithm 1: Pseudo code for the dynamic optimiza-
tion with particle swarms (DOPS) method
input : A randomized swarm of particles of size

NP × K and fixed number of function
evaluations N

output: Optimized parameter vector of size 1 × K
1 Initialize the particles randomly and assign particles
randomly to various sub-swarms;

2 while j ≤ N do
3 ifmod(j,G)=0 then
4 Reassign particles to different sub-swarms;
5 end
6 for i ← 1 to NS do
7 Update particles within sub-swarms

according to Eq. 3;
8 end
9 Find best particle G amongst all sub-swarms;

10 if besterror(j) ≥ 0.99 ∗ besterror(j + 1) then
11 failurecounter ← failurecounter + 1;
12 else
13 failurecounter ← 0;
14 end
15 if failurecounter ≥ threshold then
16 G ← DDS(G,N − j);
17 return G
18 else
19 j ← j + 1;
20 end
21 return G
22 end

contain velocity terms. In DOPS, the parameter θ1,j−1 is
similar to the inertia weight parameter for the velocity
term described by Shi and Eberhart [56]; Shi and Eberhart
proposed a linearly decreasing inertia weight to improve
convergence properties of particle swarm optimization.
Our implementation of θ1,j−1 is inspired by this and the
decreasing perturbation probability proposed by Tolson
and Shoemaker [34]. It is an analogous equivalent to iner-
tia weight on velocity. However θ1,j−1 places inertia on
the position rather than velocity and uses the same rule
described by Shi and Eberhart to adaptively change with
the number of function evaluations:

θ1,j = (N − j) ∗ (wmax − wmin)

(N − 1)
+ wmin (4)

where N represents the total number of function eval-
uations, wmax and wmin are the maximum and mini-
mum inertia weights, respectively. In this study, we used
wmax = 0.9 and wmin = 0.4, however, these values are user
configurable and could be changed depending upon the
problem being explored. Similarly, θ2 and θ3 were treated

as constants, where θ2 = θ3 = 1.5; the values of θ2
and θ3 control how heavily the particle swarm weighs the
previous solutions it has found when generating a new
candidate solution. If θ2 � θ3 the new parameter solu-
tion will resemble the best local solution found by particle
i (Li), while θ3 � θ2 suggests the new parameter solution
will resemble the best global solution found so far. While
updating the particles, parameter bounds were enforced
using reflection boundary conditions (Algorithm 2).

Algorithm 2: Pseudo code for the reflective bound-
ary conditions used by the dynamic optimization with
particle swarms (DOPS) method
1 if zoldi,j < zmin

i then
2 znewi,j = zoldi,j + (zmin

i − zoldi,j ) if znewi,j > zmax
i then

3 znewi,j = zmax
i

4 end
5 end
6 if zoldi,j > zmax

i then
7 znewi,j = zoldi,j + (zoldi,j − zmax

i ) if znewi,j < zmin
i then

8 znewi,j = zmin
i

9 end
10 end

After everyM function evaluations, particles were ran-
domly redistributed to a new sub-swarm, and updated
according to Eq. (3). This process continued for a maxi-
mum of FN functions evaluations, where F denotes the
fraction of function evaluations used during the particle
swarm phase of DOPS:

F =
(
NP
N

)
j (5)

The quantity NP denotes the total number of particles in
the swarm, N denotes the total possible number of func-
tion evaluations, while the counter j denotes the number
of successful particle swarm iterations (each costing NP
function evaluations). If the simulation error stagnated
e.g., did not change by more than 1% for a specified num-
ber of evaluations (default value of 4), the swarm phase
was terminated and DOPS switched to exploring param-
eter space using the DDS approach using the remaining
(1 − F)N function evaluations.

Phase 2: DDS phase.
Dynamically Dimensioned Search (DDS) is a single solu-
tion based search algorithm. DDS is used to obtain good
solutions to high-dimensional search problems within a
fixed number of function evaluations. DDS starts as a
global search algorithm by perturbing all the dimensions.
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Algorithm 3: Pseudo code for the Dynamically
Dimensioned Search (DDS) method
input : Candidate vector G from swarm search and

(1 − F)N evaluations
output: Optimized parameter vector of size 1 × K

1 while j ≤ (1 − F)N do
2 Assign probability of perturbation to each

dimension Pi according to Eq. 7;
3 Select a subset of dimensions based on a threshold

value for perturbation;
4 Update candidate solution G(J) according to Eq. 5;
5 Ensure updated solution Gnew(J) is within bounds

using Algorithm 2;
6 end

Later the number of dimensions that are perturbed is
decreased with a certain probability. The probability that
a certain dimension is perturbed reduces (a minimum
of one dimension is always perturbed) as the iterations
increase. This causes the algorithm to behave as a local
search algorithm as the number of iterations increase.
The perturbation magnitude of each dimension is from
normal distribution with zero mean. The standard devi-
ation that was used in the original DDS paper and the
current study is 0.2. DDS performs a greedy search
where the solution is updated only if it is better than
the previous solution. The combination of perturbing
a subset of dimensions along with greedy search indi-
rectly relies on model sensitivity to a specific param-
eter combination. The reader is requested to refer to
the original paper by Tolson and Shoemaker for further
detail [34].
At the conclusion of the swarm phase, the overall best

particle, Gk , over the k sub-swarms was used to initialize
the DDS phase. DOPS takes at least (1 − F)N function
evaluations during the DDS phase and then terminates the
search. For the DDS phase, the best parameter estimate
was updated using the rule:

Gnew(J) =
{
G(J) + rnormal(J)σ (J), if Gnew(J) < G(J).
G(J), otherwise.

(6)

where J is a vector representing the subset of dimensions
that are being perturbed, rnormal denotes a normal random
vector of the same dimensions as G, and σ denotes the
perturbation amplitude:

σ = R
(
pU − pL

)
(7)

where R is the scalar perturbation size parameter, pU and
pL are (K × 1) vectors that represent the maximum and

minimum bounds on each dimension. The set J was con-
structed using a probability function Pi that represents a
threshold for determining whether a specific dimension
j was perturbed or not; Pi is monotonically decreasing
function of function evaluations:

Pi = 1 − log
[

i
(1 − F)N

]
(8)

where i is the current iteration. After Pi is determined, we
drew Pj from a uniform distribution for each dimension j.
If Pj < Pi was included in J. Thus, the probability that
a dimension j was perturbed was inversely proportional
to the number of function evaluations. DDS updates are
greedy; Gnew becomes the new solution vector only if it is
better than G.

Multiswitch DOPS
We investigated whether switching search methods more
than once would result in better performance; this DOPS
variant is referred to as multiswitch DOPS or msDOPS.
msDOPS begins with the PSO phase and uses the same
criteria as DOPS to switch to the DDS phase. How-
ever, msDOPS can switch back to a PSO search when
the DDS phase has reduced the functional value to
90% of its initial value. Should the DDS phase fail to
improve the functional value sufficiently, this version
is identical to DOPS. When the switch from DDS to
PSO occurs, we use the best solution from DDS to
seed the particle swarm. DOPS and msDOPS source
code is available for download under a MIT license
at http://www.varnerlab.org.

Comparison techniques
The implementations of particle swarm optimization,
simulated annealing, and genetic algorithms are the
ones given in Matlab R2017A (particleswarm,
simulannealbnd and ga). The implementation of DE
used was developed by R.Storn and available at http://
www1.icsi.berkeley.edu/~storn/code.html. The version
of eSS used was Release 2014B - AMIGO2014bench
VERSION WITH eSS MAY-2014-BUGS FIXED - JRB,
released by the Process Engineering Group IIM-CSIC.
The genetic algorithm, particle swarm, and differential
evolution algorithms were run with a 40 particles to be
directly comparable to the number of particles used in
the PSO phase of DOPS. For comparison, the version
of CM-AES used was cmaes.m, Version 3.61.beta from
http://cma.gforge.inria.fr/cmaes_sourcecode_page.html.
The scripts used to run the comparison methods are also
available at http://www.varnerlab.org.

http://www.varnerlab.org
http://www1.icsi.berkeley.edu/~storn/code.html
http://www1.icsi.berkeley.edu/~storn/code.html
http://cma.gforge.inria.fr/cmaes_sourcecode_page.html
http://www.varnerlab.org
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