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Abstract

Background: The boundary formation in the Drosophila large intestine is widely studied as an important biological
problem. It has been shown that the Delta-Notch signaling pathway plays an essential role in the formation of
boundary cells.

Results: In this paper, we propose a mathematical model for the Delta-Notch dependent boundary formation in the
Drosophila large intestine in order to better interpret related experimental findings of this biological phenomenon. To
achieve this, we not only perform stability analysis on the model from a theoretical point of view, but also perform
numerical simulations to analyze the model with and without noises, the phenotype change with the change of Delta
or Notch expression, and the perturbation influences of binding and inhibition parameters on the boundary formation.

Conclusions: By doing all these work, we can assure that our model can better interpret the biological findings
related to the boundary formation in the Drosophila large intestine.

Keywords: Boundary formation, Drosophila large intestine, Delta-Notch signaling pathway, Local stability analysis,
Simulation validation, Perturbation analysis

Background
The large intestine of Drosophila embryo is a middle
and large region of the Drosophila hindgut and is sub-
divided into dorsal and ventral domains, between which
a one-cell-wide strand of boundary cells forms bilater-
ally for wild-type embryos [1–4]. The large intestine is a
multicellular system that involves a number of cells com-
posed of three cell types, dorsal, ventral and boundary
cells, organized in a single-layered epithelial tube [5]. For
such developmental patterning problems, different kinds
of computational strategies [6] have been proposed, e.g.,
signaling gradients [7] and activator-inhibitor systems [8],
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and many computational techniques are adopted, e.g.,
ordinary/partial differential equation [9] and colored Petri
nets [10]. See [11] for a review. However, for the boundary
formation in the Drosophila large intestine, the mecha-
nism has been widely explored in vivo, e.g., [1–4, 12], but
rarely from the computational point of view, e.g., [13].
It has been shown that the Delta-Notch signaling path-

way plays an essential role in the boundary formation of
the Drosophila large intestine [1, 12]. In fact, the Delta-
Notch pathway is considered as one of the six major
signaling pathways in cells, which is active in developing
embryos at different phases [14]. Both Notch and Delta
proteins are transmembrane proteins, where Notch pro-
teins act as receptors and Delta proteins as ligands. When
Delta ligands in a cell bind to Notch receptors in neigh-
boring cells, all the cells in a systemmay evolve and finally
form different types of patterns [15–18].
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In order to understand the mechanism of the Delta-
Notch pathway, there have been somemathematical mod-
els proposed. For example, Collier et al. proposed a simple
ordinary differential equation (ODE) model for the Delta-
Notch signaling pathway, and discussed numerical simu-
lation of multiple-cell systems [19]. Boareto et al. devised
a theoretical framework that includes a couple of ODEs
to explore the effects of Jagged in cell-fate determination
[20]. Sprinzak et al. gave a model of a set of ODEs for
describing mutual inactivation of Notch and Delta and
used this model to illustrate how cis-interactions between
Notch and Delta generate mutually exclusive signaling
states [21]. Specifically, Matsuno et al. analyzed the mech-
anism of the Notch-dependent boundary formation in the
Drosophila large intestine and built a hybrid Petri net
model to numerically explore how the Delta-Notch path-
way affects the boundary formation in two-dimensional
space [13].
In this paper, we propose a mathematical model for

the Delta-Notch dependent boundary formation in the
Drosophila large intestine based on the work of [13], aim-
ing at better interpreting related biological findings and
further making predictions. Compared with the exist-
ing work in this area, our work has the following main
contributions.
(1) We give a mathematical model for the Delta-Notch

dependent boundary formation in the Drosophila large
intestine, which can better interpret relevant biological
findings, so far obtained in the lab. Moreover, this model
can be numerically simulated efficiently. To make the
model both mathematically and biologically sound, we do
the following analysis work.
(2) We perform local stability analysis on the two-cell

model to make the model mathematically sound. The
analysis confirms that the model would reach an equilib-
rium, which corresponds to that the system would result
in a stable pattern in either normal or mutant conditions.
The model is also stable when some conditions are sat-
isfied, which means even if there are small disturbances
of parameters (e.g., small environmental noises), the sys-
tem would still converge to a stable state after a period of
time.We use the local stability analysis result to determine
appropriate parameter values that make the system stable.
(3) We perform numerical simulations with and with-

out noises of Notch expression, which shows that both
deterministic and random simulation results are consis-
tent with experimental observations. We further analyze
how phenotypes change with the change of Delta or Notch
expression.
(4) We analyze the perturbation influences of binding

and inhibition parameters on the boundary formation. As
the boundary formation is affected by many environmen-
tal factors or noises, to make the model more realistic, we
need to consider noises into the model by finding those

parameters that have significant influences on the dynam-
ics of the model when they vary. According to the analysis
result, we add appropriate random noise items to key
parameters of the model.
This paper is structured as follows. In the section of

methods, we introduce relevant biological background of
the Delta-Notch dependent boundary formation in the
Drosophila large intestine, and present a mathematical
model for this biological phenomenon. In the section of
results and discussions, we give stability analysis, simula-
tion analysis, and parameter perturbation analysis of the
model. Finally, the conclusion is given.

Methods
In this section, we introduce relevant biological back-
ground and give a description of the mathematical model
we develop, as well as the simulation and analysis methods
which we use.

Boundary formation in the Drosophila large intestine
The large intestine of Drosophila embryo is a major mid-
dle region of the Drosophila hindgut and is subdivided
into dorsal and ventral domains (see Fig. 1), each of which
is characterized by different cell types, dorsal or ventral.
Between these two domains, a one-cell-wide strand of
boundary cells forms in wild-type embryos.
The Delta-Notch signaling pathway plays an essential

role in the formation of boundary cells [1, 12]. The main
processes [1] are shown in Fig. 2. When the Delta ligands
on the ventral cell surface bind to the Notch receptors
of a neighboring Delta-negative dorsal cell, a Delta-Notch
signaling cascade is activated. First the site 2 cleavage
of the Notch proteins occurs to generate a transmem-
brane form (N�E), followed by the Presenilin-dependent
site 3 cleavage, producing an active Notch intracellular
fragment (Nintra). Nintra then activates the target genes,
inducing boundary cell differentiation. Moreover, Delta
autonomously blocks the Presenilin-mediated site 3 cleav-
age and thus inhibits Notch signal transduction within
Delta-positive ventral cells.
In this paper, we aim to interpret the publicated findings

about the boundary cell patterning in the large intes-
tine [1, 4, 13] (see Fig. 3) and hypothesize the following
scenarios for our model.

• Scenario 1. In a wild-type embryo, a one-cell-wide
strand of boundary cells forms at the interface of
dorsal and ventral domains. See Fig. 3a for an
illustration.

• Scenario 2. In an embryo where over-expression of
Notch or Delta proteins happens, the number of
boundary cells would change. If we fix
over-expression of Notch proteins, the number of
boundary cells would increase with the decrease of
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(a)

(b)
Fig. 1 An illustration of the Drosophila hindgut. a Boundary cells form one-cell-wide domains bilaterally (arrows) between dorsal and ventral
domains of the large intestine. b A diagram of the hindgut domains in the wild-type Drosophila embryo, adapted from [3]

Delta background. See Fig. 3b1 to b2 for an
illustration.

• Scenario 3. However, if we fix the background of
Delta proteins, the number of boundary cells would
increase with the increase of over-expression of
Notch proteins. See Fig. 3c1 to c2 for an illustration.

• Scenario 4. During the boundary formation in the
Drosophila large intestine, environmental factors
such as temperature may heavily affect the boundary
formation, thus resulting in different (random)
phenotypes. Therefore, the model to be built should
incorporate such random noises into some
parameters of interest.

In what follows, we will construct and analyze our
model step by step.

Mathematical model
Cell-to-cell interaction mediated by the Delta-Notch
signaling pathway plays an essential role in the develop-
ment of a multicellular organism such as the Drosophila
large intestine. In this work we propose a mathematical
model for the core part of the Delta-Notch dependent
boundary formation in the Drosophila large intestine
(see Fig. 4 for a one-cell model) based on the work of
[13]. That is, we only consider two key species, Delta (D)
and Notch, and Notch can be in the inactive state (N)
or active state (A). Inactive Notch can be converted into
the active state when coupled with Delta from neigh-
boring cells. Active Notch can inhibit the production
of Delta of the same cell through target genes. Besides,
Delta also inhibits the production of Notch of the
same cell.
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Fig. 2 A diagram of the Delta-Notch signaling pathway in boundary cell formation of the large intestine. This pathway shows the interaction of two
neighboring cells, which is adapted from [1]

We arrange all cells in a regular M × N lattice (see
Fig. 5 for an illustration), each site (cell) being a hexagon
and having at most six neighboring cells. That is, we have
NC = M × N/2 cells for anM × N lattice.
The mathematical model is then given as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dDi
dt

= λ

1 + � · Ai
− d1Di −

∑

NG(i)
f1 · Di,

dNi
dt

= λN − d2Ni +
∑

j∈NG(i)
f2 · Dj − aNi

bDi + Ni
,

dAi
dt

= −d3Ai + aNi
bDi + Ni

.

(1)

Here, 1 ≤ i ≤ NC. Di, Ni and Ai denote the concentra-
tion of Delta proteins, inactive and active Notch proteins,

respectively, in the ith cell. In λ
1+�·Ai

, λ represents the
production rate of Delta proteins, and � the inhibition
coefficient of active Notch proteins Ai. d1 represents the
degradation rate of Delta proteins.

∑

NG(i)
Di represents the

concentration of the Delta proteins (in the ith cell) that
bind to the Notch proteins of the contacting cells of the
ith cell, and NG(i) denotes all the neighbors of the ith cell.
f1 represents the binding rate of Delta ligands to Notch
receptors. λN and d2 represent the production rate and
the degradation rate of inactive Notch proteins, respec-
tively. f2 represents the binding rate of Delta ligands to
Notch receptors. In aNi

bDi+Ni
, a represents the conversion

rate of Notch proteins from the inactive state to the active
state, while b describes the inhibition effect of Delta on
Notch in the same cell i. d3 is the degradation rate of active
Notch proteins.
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Fig. 3 Diagram for the experimental result of the boundary formation
of the Drosophila large intestine. (a): Wild-type, (b1) to (b2):
over-expression of Notch with decreasing Delta background, and,
(c1) to (c2): over-expression (decreasing) of Notch with fixed Delta
background. Each filled circle is a boundary cell. Dmeans the dorsal
domain and V the ventral domain. This diagram is made according to
[1, 4, 13]

Simulation and analysis methods
We encode our mathematical model and perform all
simulations with Matlab 2016. Besides, we employ the
following analysis methods for our model.

Local stability analysis
We conduct local stability analysis to explore stability con-
ditions of our model , with which we further determine
values of parameters.
A set of autonomous ordinary differential equations can

be written in the following vector form:

ẋ = f (x)

where x = (x1, x2, . . ., xn) is the state vector and f =
(f1, f2, . . ., fn). The Jacobian matrix is:

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂f1
∂x1

∂f1
∂x2 · · · ∂f1

∂xn
∂f2
∂x1

∂f2
∂x2 · · · ∂f2

∂xn
...

...
...

∂fn
∂x1

∂fn
∂x2 · · · ∂fn

∂xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Assume x∗ is an equilibrium point, i.e., f (x∗) = 0. J∗
is the Jacobian matrix evaluated at x∗. The equilibrium

point x∗ is stable if all the eigenvalues of the characteristic
equation of J∗ have negative real parts [22].

Sensitivity analysis
We conduct sensitivity analysis to investigate the signifi-
cance of model parameters. Sensitivity analysis studies the
uncertainty of the output of a model caused by the uncer-
tainty of the inputs of the model [23, 24]. Assume the
output (Y ) of a model can be represented as the following
equation:

Y = f (x1, x2, . . ., xn)

where xi (i = 1, 2, . . .n) represent the input variables or
factors. Each time, we analyze the sensitivity of one fac-
tor (or parameter) by assigning a perturbation term εβ to
the factor, e.g., xi, where ε denotes the disturbance inten-
sity and β is a random number that satisfies the uniform
distribution between [-1, 1]. We randomly sample values
from the interval [ xi − ε, xi + ε] and then compute the
mean and variance of the output as follows:

Ȳ = 1
K

K∑

k=1
Yk ,

S2 =
K∑

k=1
(Yk − Ȳ )

2
/(K − 1),

where Yk (k = 1, 2, . . .,K ) are values of the output Y.

Results and discussion
In what follows, we present analysis and simulation results
for the model.

Local stability analysis
System (1) gives the dynamic equations ofNC cells, which
is impossible to be analyzed for a big NC in theory. How-
ever, due to the locality of the Delta-Notch interaction,
we can still obtain valuable insight into the whole sys-
tem by only considering two cells to explore their dynamic
behavior such as equilibria and stability [25–27] from the
theoretical point of view. The mathematical model of two
cells is given as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dD1
dt

= λ

1 + � · A1
− d1D1 − f1 · D1,

dN1
dt

= λN − d2N1 + f2 · D2 − aN1
bD1 + N1

,

dA1
dt

= −d3A1 + aN1
bD1 + N1

,

dD2
dt

= λ

1 + � · A2
− d1D2 − f1 · D2,

dN2
dt

= λN − d2N2 + f2 · D1 − aN2
bD2 + N2

,

dA2
dt

= −d3A2 + aN2
bD2 + N2

.

(2)
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Fig. 4 The model for one cell. In this model, only two species, Delta (D) and Notch are considered. Notch can be in inactive state (N) or active state (A)

In the following, we will take λ (the production rate of
Delta proteins) as an example to study the equilibria and
stability of System (2).
(1) When λ = 0, which corresponds to mis-expression

of Delta, we obtain the equilibrium

E0 = (
D0
1,N

0
1 ,A

0
1,D

0
2,N

0
2 ,A

0
2
)
,

where D0
1 = 0, N0

1 = λN−a
d2 , A0

1 = a
d3 , D

0
2 = 0, N0

2 = λN−a
d2

and A0
2 = a

d3 .

(2) When λ > 0, which corresponds to normal or over-
expression of Delta, we obtain the equilibrium

E1 = (
D1
1,N

1
1 ,A

1
1,D

1
2,N

1
2 ,A

1
2
)
,

where D1
1 = λ(

1+�A1
1
)
(d1+f1)

, N1
1 = bd3λA1

1(
1+�A1

1
)
(d1+f1)

(
a−d3A1

1
) ,

D1
2 = λ(

1+�A1
1
)
(d1+f1)

, N1
2 = bd3λA1

1(
1+�A1

1
)
(d1+f1)

(
a−d3A1

1
) and

A1
2 = A1

1. A
1
1 is the solution of

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
x

0

1

2

3

4

5

y

Fig. 5 A two-dimensional lattice for the model. The mathematical model proposed in this paper works on the two-dimensional lattice, which
defines a patch of a tissue
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− d23
(
d1 + f1

)
�

(
A1
1
)3 + [

d3
(
d1 + f1

)
(a� − d3) + �d3λN

(
d1 + f1

)] (
A1
1
)2

+ [
ad3

(
d1 + f1

) − λN
(
d1 + f1

)
(a� − d3) + d3f2λ + bd2d3λ

]
A1
1

− aλN
(
d1 + f1

) − af2λ = 0.

(3)

Now, let

m1 = −d23(d1 + f1)�,
m2 = d3(d1 + f1)(a� − d3) + �d3λN (d1 + f1),
m3 = ad3(d1 + f1) − λN (d1 + f1)(a� − d3) + d3f2λ + bd2d3λ,
m4 = −aλN (d1 + f1) − af2λ.

Then Eq. (3) becomes

m1
(
A1
1
)3 + m2

(
A1
1
)2 + m3A1

1 + m4 = 0.

Becausem1 = −d23(d1 + f1)� �= 0, we further obtain

(
A1
1
)3 + m2

m1

(
A1
1
)2 + m3

m1
A1
1 + m4

m1
= 0.

Thus, we have

A1
1 =

3

√
√
√
√
√
√
√−

2m3
2

27m3
1

− m2m3
3m2

1
+ m4

m1

2
+

√
√
√
√
√
√

⎛

⎜
⎝

2m3
2

27m3
1

− m2m3
3m2

1
+ m4

m1

2

⎞

⎟
⎠

2

+
⎛

⎜
⎝

− m2
2

3m2
1

+ m3
m1

3

⎞

⎟
⎠

3

+ 3

√
√
√
√
√
√
√−

2m3
2

27m3
1

− m2m3
3m2

1
+ m4

m1

2
−

√
√
√
√
√
√

⎛

⎜
⎝

2m3
2

27m3
1

− m2m3
3m2

1
+ m4

m1

2

⎞

⎟
⎠

2

+
⎛

⎜
⎝

− m2
2

3m2
1

+ m3
m1

3

⎞

⎟
⎠

3

− m2
3m1

.

Please note that the equilibria of System (2) we obtain above mean that the system will converge to a stable state after
a period of time.
Now, we further study the stability of System (2) at equilibrium E0. The Jacobi matrix [27] at E0 is computed as follows:

JE0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−d1 − f1 0 0 0 0 0
abN0

1
(
bD0

1+N0
1
)2 −d2 − abD0

1
(
bD0

1+N0
1
)2 0 f2 0 0

−abN0
1

(
bD0

1+N0
1
)2

abD0
1

(
bD0

1+N0
1
)2 −d3 0 0 0

0 0 0 −d1 − f1 0 0

f2 0 0 abN0
2

(
bD0

2+N0
2
)2 −d2 − abD0

2
(
bD0

2+N0
2
)2 0

0 0 0 −abN0
2

(
bD0

2+N0
2
)2

abD0
2

(
bD0

2+N0
2
)2 −d3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Assume S is the eigenvalue of the characteristic equation |JE0 |. Then the characteristic equation is calculated as
follows [27]:

∣
∣JE0

∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

S + d1 + f1 0 0 0 0 0
−abN0

1
(
bD0

1+N0
1
)2 S + d2 + abD0

1
(
bD0

1+N0
1
)2 0 −f2 0 0

abN0
1

(
bD0

1+N0
1
)2

−abD0
1

(
bD0

1+N0
1
)2 S + d3 0 0 0

0 0 0 S + d1 + f1 0 0

−f2 0 0 −abN0
2

(
bD0

2+N0
2
)2 S + d2 + abD0

2
(
bD0

2+N0
2
)2 0

0 0 0 abN0
2

(
bD0

2+N0
2
)2

−abD0
2

(
bD0

2+N0
2
)2 S + d3

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

After some intermediate computation steps, we have

|JE0 | = (S + d1 + f1)2(S + d2)2(S + d3)2 (4)

It is obvious that all of the six eigenvalues of Eq. (4) are negative, which gives the following conclusion.

Lemma 1 The equilibrium E0 is locally asymptotically stable.
For example, a simulation in this case is given in Fig. 6, with the following parameter values: λN = 0.02, d1 = d2 =

d3 = 0.01, f1 = f2 = 0.665, a = 0.012, b = 69, � = 106 and λ = 0.
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Fig. 6 A simulation plot at λ = 0. In this plot, the simulation traces of D1 (N1, A1) and D2 (N2, A2) overlap
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Next, we investigate the stability of the equilibrium E1. The Jacobi matrix at E1 is given as follows:

JE1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−d1 − f1 0 −�λ
(
1+�A1

1
)2 0 0 0

abN1
1

(
bD1

1+N1
1
)2 −d2 − abD1

1
(
bD1

1+N1
1
)2 0 f2 0 0

−abN1
1

(
bD1

1+N1
1
)2

abD0
1

(
bD1

1+N1
1
)2 −d3 0 0 0

0 0 0 −d1 − f1 0 −�λ
(
1+�A1

2
)2

f2 0 0 abN1
2

(
bD1

2+N1
2
)2 −d2 − abD1

2
(
bD1

2+N1
2
)2 0

0 0 0 −abN1
2

(
bD1

2+N1
2
)2

abD1
2

(
bD1

2+N1
2
)2 −d3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The characteristic equation is:
∣
∣JE1

∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

S + d1 + f1 0 �λ
(
1+�A1

1
)2 0 0 0

−abN1
1

(
bD1

1+N1
1
)2 S + d2 + abD1

1
(
bD1

1+N1
1
)2 0 −f2 0 0

abN1
1

(
bD1

1+N1
1
)2

−abD1
1

(
bD1

1+N1
1
)2 S + d3 0 0 0
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Let

F1 =

⎡

⎢
⎢
⎢
⎢
⎣
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(
1+�A1

1
)2
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(
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)2
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⎤

⎥
⎥
⎥
⎥
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, F2 =

⎡

⎣
0 0 0

−f2 0 0
0 0 0

⎤

⎦

and

F3 =

⎡

⎢
⎢
⎢
⎢
⎣
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)2
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2
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Then we obtain
∣
∣JE1

∣
∣ =

∣
∣
∣
∣
F1 F2
F2 F3

∣
∣
∣
∣ .

As D1
1 = D1

2,N1
1 = N1

2 ,A1
1 = A1

2, we have F1 = F3.We further have
∣
∣JE1

∣
∣ =

∣
∣
∣
∣
F1 F2
F2 F1

∣
∣
∣
∣ = |F1 + F2| · |F1 − F2| . (5)

|F1 + F2| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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1 )
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∣
∣
∣
∣
∣
∣
∣
∣
∣
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= S3 + M1S2 + M2S + M3,
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where

M1 = d2 + abD1
1

(
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1
)2 + d1 + f1 + d3,

M2 = (
d1 + f1

)
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)
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1

(
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1
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Similarly, we have

|F1 − F2| = S3 + M1S2 + M2S + M′
3,

where

M′
3 = (

d1 + f1
)
d3

(

d2 + abD1
1

(
bD1

1 + N1
1
)2

)

+ �λ
(
1 + �A1

1
)2

[
abN1

1
(
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1
)2

(
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.

Therefore, Eq. (5) becomes
∣
∣JE1

∣
∣ = |F1 + F2| · |F1 − F2|
= (

S3 + M1S2 + M2S + M3
) (
S3 + M1S2 + M2S + M′

3
)
.
(6)

Using the Routh-Hurwitz criterion for Eq. (6), we obtain

�1 ≡ 1 > 0, �2 ≡
∣
∣
∣
∣
M1 1
M3 M2

∣
∣
∣
∣ > 0,

and

�
′
1 ≡ 1 > 0, �

′
2 ≡

∣
∣
∣
∣
M1 1
M′3 M2

∣
∣
∣
∣ > 0.

Namely, M1M2 − M3 > 0, and M1M2 − M′3 > 0.
Because M3 > M′3, we only need the condition M1M2 −
M3 > 0 to be satisfied. That is, if M3

M1M2
< 1, the eigenval-

ues of |F1 + F2| = 0 and |F1 − F2| = 0 are negative; thus,
E1 is locally stable.

Lemma 2 If M3
M1M2

< 1, the equilibrium E1 is locally
asymptotically stable; if M3

M1M2
> 1, it is unstable.

For example, a simulation in this case is given in Fig. 7
with the following parameter values: λN = 0.027, d1 =
d2 = d3 = 0.01, f1 = f2 = 0.665, a = 0.012, b = 69,
� = 106 and λ = 35.

Please note that the equilibria and stability analysis
above show that the model would reach an equilibrium
in either case of λ, which corresponds to that the sys-
tem would result in a stable pattern in either normal
or mutant conditions. If there are small disturbances
of parameters (e.g., small environmental noises), the
system would always converge to a stable state after a
period of time when λ = 0 according to Lemma 1, but
the system would converge to a stable state for λ > 0
when the stability conditions in Lemma 2 are satisfied.
Besides, we will also use Lemma 2 to carefully choose
appropriate parameter values for preserving the stabil-
ity of the system. This is expected to be shown in the
the boundary formation model of the Drosophila large
intestine.

Deterministic simulation results
However, it is impossible to analyze the model above with
a large number of cells in theory, e.g., a model with 60
cells would result in 180 dimensional ordinary differential
equations. In this section, we will explore the model using
numerical simulation.
The simulation starts from a prepattern of Delta expres-

sion in normal large intestines, that is, Delta is expressed
only in the ventral region [13]. For this, we set the produc-
tion rate of the Delta level as follows: 0 for cells at the first
three rows (dorsal cells) and λ (greater than 0) for cells
at the other rows (ventral cells). We set the time span to
[0, 1500]. The parameter values are given in Table 1;
except λ and λN , other parameter values are fixed
throughout the paper. We use the same setting for all the
following simulations.
Besides, we determine a boundary cell using the follow-

ing rule. If the concentration of the active Notch proteins
(A) in a cell is equal to or greater than 1.0, we regard the
cell as a boundary cell.
In the following, we run the model given in System (1)

with the parameter values given in Table 1 to obtain deter-
ministic simulation results. We first validate the ability
of our model to reproduce the wild-type result observed
in the wet lab. We run simulation and obtain the result
in the wild-type condition, illustrated in Fig. 8a. We
can see that a single strand of boundary cells that are
abutting the ventral region is produced, which is consis-
tent with the experimental observation (corresponding to
Scenario 1 and Fig. 3a). We also run the model in other
conditions such as over-expression of Notch, and obtain
simulation results (see Fig. 8b-c), which are also consistent
with experimental observations (see Fig. 3b1-c2). That is,
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Fig. 7 A simulation plot at λ > 0. In this plot, the simulation traces of D1 (N1, A1) and D2 (N2, A2) overlap

our model has the ability to reproduce the experimental
observations obtained in the wet lab.

Phenotype change due to the change of Delta or Notch
expression
During the boundary formation in the Drosophila large
intestine, different Delta or Notch expression (normal,
mis-expression or over-expression) may result in dif-
ferent boundary cell distributions (phenotypes) [1]. In
our model, we try to incorporate all these phenotypes

Table 1 Parameter values of the model

Parameter Value

d1 0.01

d2 0.01

d3 0.01

f1 0.665

f2 0.665

a 0.012

b 69

� 106

λ [0, 12]

λN [0. 0.1]

Except λ and λN , the other parameter values are used throughout the paper

reported so far. As shown in System (1), Delta or
Notch expression is controlled by the rates λ and λN ,
respectively. Therefore, we need to map different Delta
and Notch expression observed in experiments to differ-
ent values of λ and λN in the model.
To do this, we explore the phenotype change due to the

change of Delta or Notch expression in their parameter
space and then determine what parameter value results
in what kind of phenotype. As well, we cannot adopt a
theoretical analysis due to the large number of equations
involved, and instead, we still use numerical simulation.
Besides, each time we tune only one parameter, either λ or
λN , by fixing the other.

Phenotype change due to the change of Delta expression
By fixing λN = 0.0005, we gradually increase λ from 0 to
12 with a step 0.1 and then run simulation to obtain the
simulation result, given in Table 2.
From the table above, we can see when λ > 0.2, the first

three rows are stable boundary cells, while when λ ≤ 0.2,
all the five rows are boundary cells. This means there are
only two phenotypes appearing due to the change of Delta
expression.

Phenotype change due to the change of Notch expression
By fixing λ = 9, we gradually increase λN from 0 to 0.1
with a small step 0.0001 and then run simulation to obtain
the simulation result, given in Table 3.
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Fig. 8 Deterministic simulation results. aWild-type: λN = 0 and λ = 9, b over-expression of Notch: λN = 0.008 and λ = 9, and, c over-expression of
Notch: λN = 0.1 and λ = 9

Table 3 shows with the increase of λN , the number
of boundary cells increases, which results in a couple of
different phenotypes. Besides, we should notice that a

tiny parameter change would result in a big change of
the number of boundary cells, so we can deduce that
parameter λN is very sensitive.
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Table 2 Phenotype change due to the change of Delta
expression

Expression Phenotype

12 ≥ λ > 0.2 At the first three rows are boundary cells

0 ≤ λ ≤ 0.2 At all five rows are boundary cells

By fixing λN = 0.0005, and gradually increasing λ from 0 to 12 with a step 0.1, we
obtain the phenotype change with the change of Delta expression

According to the analysis result above, we finally map
different Delta and Notch expression observed in exper-
iments to different values of λ and λN in the model.
Besides, we can reproduce all known biological pheno-
types we have found by combining different values of λ

and λN .

Simulation results with noises of Notch expression
As described in [1], the boundary formation of the
Drosophila large intestine is greatly affected by temper-
ature; the random effect of temperature may cause fluc-
tuations of gene expression levels, resulting in different
phenotypes, in which boundary cells may randomly be
distributed in the dorsal and ventral domains. In this
section, we will discuss how to use our model to obtain
these random phenotypes.
From Tables 2 and 3, we know that only λN is sensitive

to System (1), so we only add noises to λN . Then, System
(1) with a random noise becomes the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dDi
dt

= λ

1 + � · Ai
− d1Di −

∑

NG(i)
f1 · Di,

dNi
dt

= (λN + e) − d2Ni +
∑

j∈NG(i)
f2 · Dj − aNi

bDi + Ni
,

dAi
dt

= −d3Ai + aNi
bDi + Ni

,

(7)

where e is a small noise.
Running this model with different λN values, we can

obtain different random phenotypes. Figure 9 illustrates

Table 3 Phenotype change due to the change of Notch
expression

Expression Phenotype

0 ≤ λN < 0.0001 Only at the third row are boundary cells

0.0001 ≤ λN < 0.0098 At the first three rows are boundary cells

0.0098 ≤ λN < 0.01 At the first four rows are boundary cells

0.01 ≤ λN ≤ 0.1 At all five rows are boundary cells

By fixing λ = 9, and gradually increasing λN from 0 to 0.1 with a small step 0.0001,
we obtain the phenotype change with the change of Notch expression

some phenotypes. So far, we have illustrated that our
model reproduces all the phenotypes corresponding to
those four scenarios we give above.

Perturbation influences of binding and inhibition
parameters on boundary formation
During the development of the Drosophila large intes-
tine, there are many environmental factors or noises,
which may vary and even heavily affect the boundary
formation. To make the model more realistic, we need
to consider noises into the model, e.g., adding a ran-
dom term to each parameter of interest, and analyze
the model in noisy conditions. In the section above, we
have discussed the random effects of Notch expression
on the boundary formation. But in this section, we will
further analyze the perturbation influences of the bind-
ing and inhibition parameters of the Delta-Notch pathway
on the boundary formation. That is, we will explore the
inhibition parameters, a and b, and binding parameters,
f1 and f2.
For these parameters, which ones are of interest? To

answer this, we may alternatively find those parameters
which have significant influences on the dynamics of the
model when they vary. For this, we use sensitivity anal-
ysis on the mathematical model to study the influence
of parameter perturbation [28]. After that, we can design
experiments by considering noises in vivo, and carefully
add appropriate noise items to key parameters. We will
explore this in the case of over-expression of Notch pro-
teins. For the other cases, we can do the same exploration.
Next, with the parameter setting given in Fig. 8b (of

course we can use any other setting), we will explore the
influence of parameter perturbation on the boundary for-
mation by changing parameters, a, b, f1 and f2, to different
perturbation intensities.

Perturbation influence of parameter a
First, we explore the perturbation influence of parame-
ter a. All the parameters take the values given in Fig. 8b.
In order to do this, we add a perturbation term εβ to
parameter a, where ε denotes the disturbance intensity
and β is a random number that satisfies the uniform dis-
tribution between [-1, 1]. Then, System (1) with a random
disturbance becomes the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dDi
dt

= λ

1 + � · Ai
− d1Di −

∑

NG(i)
f1 · Di,

dNi
dt

= λN − d2Ni +
∑

j∈NG(i)
f2 · Dj − (a + εβi)Ni

bDi + Ni
,

dAi
dt

= −d3Ai + (a + εβi)Ni
bDi + Ni

.

(8)
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Fig. 9 Two random simulation runs at λN = 0.0005 and λ = 0.3. The noises are randomly sampled from [−5 · 10−4, 5 · 10−4]

At the beginning of each simulation, a random noise εβi
for each cell i is generated for a by sampling βi. By vary-
ing ε between [0, 0.001] and performing simulation for 50
times at each ε level, we compute the mean and standard
error of the number of boundary cells. For example, Fig. 10
gives the result when ε = 10−7, ε = 10−6, ε = 10−5 and
ε = 10−4, respectively.
From Fig. 10, we can see that a small perturbation

of parameter a may cause a big change of the number
of boundary cells (mean), i.e., the bigger the perturba-
tion intensity is, the less the number of boundary cells is
(from 36 boundary cells without perturbation to about 15
boundary cells with a perturbation intensity ε = 10−4).
Furthermore, from the error bars, we know that the bigger
the perturbation intensity is, the bigger the standard error
is, although the smaller the mean is.

Perturbation influence of parameter b
We further explore the perturbation influence of param-
eter b. Similarly we add a perturbation term εβ to b, i.e.,

replacing all b with b+ εβ in System (1). We also simulate
the model in the same way as for parameter a, and obtain
the mean and standard error of the number of boundary
cells when ε = 0.01, ε = 0.05, ε = 0.1 and ε = 0.2,
respectively, illustrated in Fig. 11.
Figure 11 shows that a big perturbation causes a small

change (e.g., there are 36 boundary cells without per-
turbation and around 34 boundary cells with the per-
turbation intensity ε = 0.2), which is quite different
from the effect of parameter a. Therefore, the pertur-
bation influence of parameter b is much smaller than
that of a.

Perturbation influence of parameters f1 and f2
We further explore the perturbation of f1 and f2. For sim-
plicity, we assume f1 = f2 = f . Similarly, we add a
perturbation term εβ to f1 and f2, i.e., replacing all f1 and
f2 with f +εβ in System (1). We also simulate the model in
the same way as above, and obtain the mean and standard
error of the number of boundary cells when ε = 0.001,
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Fig. 10 Perturbation influence of parameter a. The considered disturbance intensities are: ε = 10−7, ε = 10−6, ε = 10−5 and ε = 10−4, respectively
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Fig. 11 Perturbation influence of parameter b. The considered disturbance intensities are: ε = 0.01, ε = 0.05, ε = 0.1 and ε = 0.2, respectively
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Fig. 12 Perturbation influence of parameters f1 and f2. The considered disturbance intensities are: ε = 0.001, ε = 0.005, ε = 0.01 and ε = 0.02,
respectively
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Fig. 13 Two simulation runs for parameter a with a perturbation intensity ε = 10−6. All the parameters take the values given in Fig. 8b
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ε = 0.005, ε = 0.01 and ε = 0.02, respectively, given in
Fig. 12.
From Fig. 12, we can see, similar to parameter b, the

perturbation of parameter f does not have an obvious
influence on the number of boundary cells in the given
perturbation intensities.
In conclusion, the analysis results above show that

the perturbation of parameter a has an obvious influ-
ence on the boundary formation, while the other three
parameters not. Therefore, when we consider noises in
the model, we only add a random term to parameter a,
and neglect others. That is, we finally obtain a model
with random noises, which is given in System (8). With
this model, we can make reasonable predictions in noisy
conditions by setting the appropriate intensity of the
noise according to the analysis result above (see, e.g.,
Fig. 13).

Conclusion
In this paper, we give a mathematical model for the Delta-
Notch dependent boundary formation in the Drosophila
large intestine. We aim to use this model to better
interpret related biological phenomena and therefore we
perform not only theoretical but also simulation analy-
sis to achieve the goal. By combining different analysis
techniques, we finally confirm that the model is both
mathematically and biologically sound and is sufficient to
interpret related experimental findings of the boundary
formation in the Drosophila large intestine. Moreover, by
modulating parameters, our simulation can generate var-
ious abberant patterns of boundary cells that have not
been reported in biological studies so far. Biologically,
these varieties of phenotypes are assumed to be results of
variation of gene products in the Delta-Notch pathway.
To further verify the validity of our simulation method,
we are now trying to develop a biological experimental
system to manipulate levels of forced-gene expression.
In a next step, we will shift the purpose of the model
from interpretation to prediction. That is, we will use this
model to make different predications in different condi-
tions and then help biologists to have an idea of detailed
mechanisms of complicated biological systems, and to
design experiments to validate the predictions obtained by
our simulation.
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