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Abstract

Background: Intuitively, proteins in the same protein complexes should highly interact with each other but rarely
interact with the other proteins in protein-protein interaction (PPI) networks. Surprisingly, many existing
computational algorithms do not directly detect protein complexes based on both of these topological properties.
Most of them, depending on mathematical definitions of either “modularity” or “conductance”, have their own
limitations: Modularity has the inherent resolution problem ignoring small protein complexes; and conductance
characterizes the separability of complexes but fails to capture the interaction density within complexes.

Results: In this paper, we propose a two-step algorithm FLCD (Finding Low-Conductance sets with Dense
interactions) to predict overlapping protein complexes with the desired topological structure, which is densely
connected inside and well separated from the rest of the networks. First, FLCD detects well-separated subnetworks
based on approximating a potential low-conductance set through a personalized PageRank vector from a protein and
then solving a mixed integer programming (MIP) problem to find the minimum-conductance set within the identified
low-conductance set. At the second step, the densely connected parts in those subnetworks are discovered as the
protein complexes by solving another MIP problem that aims to find the dense subnetwork in the
minimum-conductance set.

Conclusion: Experiments on four large-scale yeast PPI networks from different public databases demonstrate that
the complexes predicted by FLCD have better correspondence with the yeast protein complex gold standards than
other three state-of-the-art algorithms (ClusterONE, LinkComm, and SR-MCL). Additionally, results of FLCD show
higher biological relevance with respect to Gene Ontology (GO) terms by GO enrichment analysis.
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Background
Recent developments of high-throughput profiling tech-
niques, such as yeast two-hybrid (Y2H) and tandem affin-
ity purification (TAP) withmass spectrometry (MS), allow
scientists to generate large-scale protein-protein inter-
action (PPI) datasets for different species [1–5]. These
interactome data have enabled us to discover biological
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insights from a systematic point of view through PPI net-
works, where nodes represent proteins and edges denote
biological relationships (either physical binding or sta-
tistical association) between two proteins. In this paper,
we focus on predicting protein complexes in derived PPI
networks from high-throughput profiling.
Based on the inherent topological structures of protein

complexes [6], prediction of protein complexes can be for-
mulated as searching for subnetworks that are densely
connected inside and well separated from the rest of the
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PPI networks. Many algorithms have been developed and
applied for this purpose of detecting protein complexes.
These existing algorithms can be grouped into three cat-

egories. The first category includes the algorithms that
mimic Markovian random walk on graphs, pioneered
by MCL [7]. MCL does not have explicit mathemati-
cal definitions for the desired properties of subnetworks
to detect as protein complexes. Similar to random walk,
it iteratively implements “Expand” and “Inflation” oper-
ations to generate non-overlapping complexes. R-MCL
[8] and SR-MCL [9] are improved versions of MCL.
R-MCL penalizes the large complexes at each iteration
in order to obtain more size-balanced complexes with
a similar number of nodes within them. SR-MCL exe-
cutes R-MCL many times to yield overlapping complexes.
All those algorithms have shown good empirical per-
formance, despite the mystery of parameter tuning and
the lack of theoretic understanding of their working
mechanisms.
Algorithms in the second category do not directly pre-

dict complexes according to the topological structure of
subnetworks but resemble traditional clustering meth-
ods based on derived similarity measures between nodes
or edges. For example, MCODE [1], CFinder [10], and
RRW [11] grow complexes from single nodes by iter-
atively adding similar nodes in terms of different sim-
ilarity criteria that help form local dense subnetworks.
However, they only concentrate on the internal connec-
tivity of the subnetworks and neglect the connectivity
between the subnetworks and the rest of the networks.
LinkComm [12] represents networks with edge graphs,
whose nodes are interactions and edges reflect the sim-
ilarity between interactions, and derives potential com-
plexes by hierarchical clustering to partition the edge
graphs.
Algorithms in the third category detect complexes based

on explicit topological definitions of protein complexes.
For example, modularity [13] and conductance [6, 14] are
two widely used definitions. Algorithms based on modu-
larity [15] aim to detect subnetworks that have higher than
expected internal connections. And algorithms, such as
ClusterONE [6], based on finding low-conductance sets,
focus on the separability of the subnetworks, which can
be quantified by the ratios between the external connec-
tions of subnetworks and the total number of interac-
tions of the proteins within the subnetworks. However,
these methods have their own limitations. Modularity-
based methods have the inherent resolution problem
[16], which leads to ignorance of small-size protein com-
plexes. Algorithms based on conductance minimization
[6, 17] consider the relationships between the internal
connections and the external connections of subnetworks,
but neglect the density of the interactions within the
subnetworks.

In this paper, we propose a two-step algorithm
FLCD (Finding Low-Conductance sets with Dense
interactions) to detect protein complexes that have dense
interactions inside and sparse interactions outside in a
given PPI network. FLCD explicitly takes care of both the
internal and external connectivity of protein complexes
in two steps. FLCD first identifies a low-conductance set
around a protein, which is locally well separated from the
rest of the network. Then a densely connected subnet-
work within the low-conductance set is detected based on
the definition of the edge density of a subnetwork pro-
posed in [18]. We compare our FLCD with three state-of-
the-art overlapping complex prediction algorithms, which
are ClusterONE [6], LinkComm [12], and SR-MCL [9],
respectively. Experimental results on four different yeast
PPI networks from different publicly accessible databases
demonstrate that our FLCD outperforms all competing
algorithms for biological significance in terms of yeast
protein complex gold standards and Gene Ontology (GO)
term annotations [19].

Results and discussion
We first introduce the implementation details of the algo-
rithms that we take for comparison; the information of
the PPI networks, the reference protein complex datasets
as our gold standards, and the GO terms we use for eval-
uation; and the criteria for the performance comparison.
In order to demonstrate the robust performance of FLCD,
we then compare predicted protein complexes from three
selected state-of-the-art protein complex prediction algo-
rithms based on two golden standard protein complex
datasets on four public yeast PPI networks. What’s more,
we apply GO enrichment analysis to the entire set of
detected complexes by all the competing algorithms. At
the end, we illustrate differences between protein com-
plexes predicted by all competing algorithms correspond-
ing to specific reference complexes to further demonstrate
the superiority of our FLCD.

Algorithms, data, and evaluation metrics
Algorithms
We compare our FLCD algorithm with other three state-
of-the-art overlapping complex prediction algorithms,
which are ClusterONE [6], LinkComm [12], and SR-MCL
[9]. The JAVA implementation of ClusterONE does not
require any tuning parameters. For LinkComm, we set
the tuning parameter t (the threshold to cut the dendro-
gram for hierarchical clustering) to 0.2 that achieves the
best performance empirically in our experiments. For SR-
MCL, we set the inflation parameter I = 3 and other
parameters to their default settings since they yield the
best results in our experiments. We set the only param-
eter k of our FLCD, the size of local neighbors based on
personalized PageRank computation, to 20.
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Data
We take four yeast PPI networks for performance
evaluation: SceDIP, SceBG, SceIntAct, and SceMINT,
extracted respectively from the Database of Interacting
Proteins (DIP) [2], the Biological General Repository for
Interaction Datasets (BioGRID) [3], the IntAct Molecu-
lar Interaction Database (IntAct) [4], and the Molecu-
lar INTeraction database (MINT) [5]. We note that we
only consider protein-protein interactions by removing
all genetic interactions from SceBG. We download the
protein complex gold standards from the supplementary
data in [6], which are obtained from the Saccharomyces
Genome Database (SGD) [20] and the Munich Informa-
tion Center for Protein Sequences (MIPS) [21] databases.
For each PPI network, we remove reference protein com-
plexes if their size smaller than 3 or half of the proteins
of them are not in the network. The detailed informa-
tion of four PPI networks and the gold standard reference
complex datasets are provided in Table 1.
Due to the possible incompleteness of the reference

protein complexes, we further examine the biological
relevance of every predicted complex by GO enrich-
ment analysis. We download the mappings of yeast
genes and proteins to GO terms according to [20]
(version 20150411).

Evaluationmetrics for protein complex prediction
For the protein complex prediction, we assess the perfor-
mance of all competing algorithms by a composite score
consisting of three quality measures: F-measure [9, 14];
the geometric accuracy (Acc) score [14]; and the maxi-
mum matching ratio (MMR) [6]. For fair comparison, we
remove predicted complexes of two or fewer proteins by
all competing algorithms.
For a gold standard reference protein complex set C =

{c1, c2, . . . , cn} and a set of predicted complexes S =
{s1, s2, . . . , sm}, the F-measure is defined as the harmonic
mean of precision and recall defined as follows:

precision = |Ncs|
|S| ; recall = |Ncp|

|C| , (1)

in which Ncs = {si ∈ S|NA(cj, si) ≥ 0.25, ∃cj ∈ C} is
the set of the complexes that match to one or more ref-
erence protein complexes; |Ncs| is the size of the set Ncs.

Table 1 The detailed information of four yeast PPI networks and
the numbers of covered SGD and MIPS reference complexes

Network #. proteins #. interactions SGD MIPS

SceDIP 5136 22491 224 184

SceBG 6438 80577 234 189

SceIntAct 5453 54134 231 187

SceMINT 5414 27316 230 188

Ncp = {ci ∈ C|NA(ci, sj) ≥ 0.25, ∃sj ∈ S} is a set of ref-
erence protein complexes that are matched by predicted
complexes. We consider a reference protein complex cj is
matched by a predicted complex sj if NA(ci, sj) ≥ 0.25

[9, 22], where NA(ci, sj) = |ci ∩ sj|2
|ci| × |sj| is called neighbor-

hood affinity. Finally, the F-measure is

F-measure = 2 × precision ∗ recall
precision + recall

. (2)

The geometric accuracy (Acc) score is the geometric
mean of two other measures — the cluster-wise sensitiv-
ity (Sn) and cluster-wise positive predictive value (PPV)
[6]. Given m predicted and n reference complexes, let tij
denote the number of proteins that exist in both predicted
complex si and reference complex cj, and wj represent the
number of proteins in reference complex cj. Then Sn and
PPV can be computed as

Sn =
∑n

j=1 max
i=1,...,m

tij
∑n

j=1 wj
; PPV =

∑m
i=1 max

j=1,...,n
tij

∑m
i=1

∑n
j=1 tij

. (3)

The Acc score provides a balanced measure of Sn and
PPV: Acc = √

Sn × PPV.
The maximummatching ratio (MMR) is the ratio of the

weight of maximum weight matching to the size of the
reference set.

GO enrichment analysis
Suppose that a given PPI network has N proteins with M
proteins annotated with one GO term and the predicted
complex has n proteins with m proteins annotated with
the same GO term. The p-value of the complex enriched
with that GO term can be calculated as similarly done
in [23]:

p-value =
n∑

i=m

(m
i
)(N−M

N−i
)

(N
n
) . (4)

We choose the lowest p-value of all its enriched GO
terms for a predicted complex as its final p-value. A GO
term is statistically significantly enriched when the p-
value of any complex corresponding to this GO term is
lower than 1e−3.

Comparison on protein complex prediction
We apply all competing algorithms to search for potential
protein complexes in four yeast PPI networks and com-
pare them in terms of the composite score, consisting of
F-measure, Acc score and MMR based on both the SGD
and MIPS reference protein complex datasets.
We note that the different sizes and different numbers

of detected complexes would affect the scores for the met-
rics that we have employed. However, in the context of
complex prediction, there is no universal gold-standard
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metric. Hence, we apply three aforementioned metrics
that have been commonly adopted in many other related
works [6, 9]. We also note that the average sizes of the
complexes generated by FLCD in our experiments are
from 6 to 8 for four networks under study. The average
complex sizes are indeed comparable to the average sizes
of detected complexes by other algorithms. For example,
the average sizes of complexes produced by LinkCom-
munity are from 5 to 6; The average sizes of complexes
produced by ClusterONE are from 7 to 9; The average
sizes of complexes produced by SR-MCL are from 8 to 10.
Furthermore, the total numbers of predicted complexes
yielded by FLCD, LinkCommunity and SR-MCL are much
larger than that of ClusterONE. The reason is that the
post-processing procedure of ClusterONE filters out com-
plexes with lower scores but FLCD and LinkCommunity
output all complexes without filtering.
As shown in Figs. 1 and 2, FLCD clearly outperforms

other state-of-the-art algorithms for all four networks on
both SGD and MIPS reference datasets. Therefore, the
complexes detected by FLCD have the best correspon-
dence with the reference datasets. The detailed evaluation
scores in Figs. 1 and 2 are displayed in Tables 2 and 3,
respectively.
When we take SGD reference dataset as our gold stan-

dard protein complexes, from Table 2, we find that FLCD
consistently achieves the best MMR scores among all
competing algorithms because FLCD is the only algo-
rithm that can capture the desired network structure
of protein complexes. In the table, we also compare F-
measure and the precision and recall scores that are used
to compute F-measure. We observe that for all four PPI
networks, FLCD predicts the largest number of matched

reference protein complexes, and therefore FLCD attains
the best recall scores for all PPI networks. With respect
to the precision score, FLCD is the best for SceMINT
but ClusterONE performs the best for the rest. How-
ever, since the post-processing step in ClusterONE only
keeps the dense complexes, ClusterONE has low cover-
age. Based on the precision and recall scores, we find
that FLCD attains the best F-measures for SceDIP and
SceMINT PPI networks and ClusterONE obtains the best
scores for SceBG and SceIntAct PPI networks. In addi-
tion to MMR and F-measure, we show comparison on
the cluster-wise sensitivity (Sn), the cluster-wise positive
predictive value (PPV) and the Acc score. We notice that
FLCD has the best Acc scores for SceBG and SceIntAct.
LinkComm obtains the best Acc scores for SceDIP and
SceMINT, since LinkComm detects several large-size and
many small-size complexes, which favors both the Sn and
PPV scores [6]. We also compare the coverage of the com-
peting algorithms and notice that SR-MCL has the largest
coverage and FLCD has competitive coverage to SR-MCL.
Here, the coverage is defined as the number of proteins
covered by all predicted complexes, which is typically used
to evaluate whether complex prediction algorithms can
help comprehensively predict functionalities for all the
proteins in a given network.
For MIPS reference dataset, we notice the similar trend

for the evaluation scores in Table 3. FLCD finds the largest
number of matched reference complexes in MIPS and
attains the best recall scores, F-measures andMMR scores
for all four PPI networks. The Acc scores of FLCD are
competitive to LinkComm, which achieves the best Acc
scores for all four yeast PPI networks. FLCD covers the
competitive number of proteins to SR-MCL, which covers

SceDIP SceBG SceIntAct SceMINT

FLCD SR-MCL ClusterONE LinkCommunity

F-measure Accuracy score Maximum matching ratio
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Fig. 1 Comparison of all competing algorithms by SGD reference dataset in terms of the composite scores. Shades of the same color indicate
different evaluating scores. Each bar height reflects the value of the composite score
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Fig. 2 Comparison of all competing algorithms by MIPS reference dataset in terms of the composite scores. Shades of the same color indicate
different evaluating scores. Each bar height reflects the value of the composite score

the largest number of proteins in all four yeast PPI net-
works. However, by the overall performance, which is
represented by the composite score, FLCD is superior to
other competing algorithms as shown in Fig. 2.
In summary, considering the composite score based

on three metrics, our FLCD outperforms the other algo-
rithms. To further validate all competing algorithms, we

performGO enrichment analysis in the next section to see
whether all predicted complexes by different algorithms
have significant biological meaning.

Comparison on GO enrichment analysis
We perform GO enrichment analysis for all protein com-
plexes predicted by the competing algorithms and report

Table 2 Comparison of protein complex prediction by SGD reference dataset

Network Method # complex #. matched coverage Recall Precision F-measure Sn PPV Acc MMR

SceDIP FLCD 2134 152 3921 0.6786 0.2020 0.3113 0.5964 0.5003 0.5462 0.3685

CONE 380 86 1503 0.3839 0.2579 0.3085 0.4082 0.6203 0.5032 0.1950

LinkC 1839 137 3735 0.6116 0.1289 0.2130 0.6290 0.4820 0.5506 0.3276

SR-MCL 3216 44 4678 0.2228 0.0221 0.0412 0.5120 0.2893 0.3489 0.0708

SceBG FLCD 4027 183 5836 0.7821 0.2000 0.3181 0.7363 0.5621 0.6433 0.4920

CONE 522 122 2735 0.5214 0.2433 0.3318 0.6488 0.6035 0.6257 0.2542

LinkC 5382 164 6076 0.7008 0.1217 0.2072 0.8880 0.4373 0.6231 0.4100

SR-MCL 1862 108 5889 0.4615 0.1245 0.1961 0.8999 0.3034 0.5225 0.2151

SceIntAct FLCD 3394 172 4678 0.7446 0.1933 0.3069 0.6699 0.5391 0.6009 0.4661

CONE 496 117 1994 0.5065 0.2419 0.3275 0.5742 0.5944 0.5842 0.2742

LinkC 1297 93 5290 0.4026 0.0941 0.1525 0.9223 0.2393 0.4698 0.2285

SR-MCL 1079 68 5342 0.2294 0.0437 0.1517 0.7784 0.2402 0.4341 0.1213

SceMINT FLCD 2483 157 4210 0.6826 0.2280 0.3418 0.6524 0.5284 0.5871 0.4163

CONE 513 110 2335 0.4783 0.2027 0.2848 0.5370 0.5954 0.5654 0.2442

LinkC 2201 144 4068 0.6261 0.1595 0.2542 0.6757 0.5540 0.6119 0.3743

SR-MCL 3698 33 4976 0.1435 0.0169 0.0302 0.5013 0.2597 0.3608 0.0609

CONE and LinkC are short for ClusterONE and LinkComm, respectively
Bold values denote the best scores corresponding to specific criteria
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Table 3 Comparison of protein complex prediction by MIPS reference dataset

Network Method # complex #. matched Coverage Recall Precision F-measure Sn PPV Acc MMR

SceDIP FLCD 2134 120 3921 0.6522 0.1603 0.2573 0.4001 0.3901 0.3951 0.3206

CONE 380 74 1503 0.4022 0.1868 0.2551 0.2749 0.4015 0.3322 0.1533

LinkC 1839 109 3735 0.5924 0.1104 0.1862 0.4775 0.3646 0.4173 0.2993

SR-MCL 2851 41 4687 0.1964 0.0230 0.0402 0.4592 0.2104 0.3108 0.0726

SceBG FLCD 4027 124 5836 0.6561 0.1393 0.2298 0.4643 0.4315 0.4476 0.3611

CONE 522 86 2735 0.4450 0.1533 0.2293 0.4537 0.4452 0.4494 0.1795

LinkC 5382 109 6076 0.6349 0.0918 0.1604 0.8179 0.3504 0.5354 0.3285

SR-MCL 1862 65 5889 0.3439 0.0673 0.1126 0.7360 0.2436 0.4234 0.1384

SceIntAct FLCD 3394 120 4678 0.6417 0.1452 0.2368 0.4183 0.4034 0.4108 0.3482

CONE 496 79 1994 0.4225 0.1633 0.2356 0.3587 0.4296 0.3925 0.1927

LinkC 1297 80 5290 0.4278 0.0732 0.1251 0.9028 0.1986 0.4234 0.1886

SR-MCL 1079 45 5342 0.1337 0.0190 0.0941 0.6246 0.1850 0.3399 0.0960

SceMINT FLCD 2483 111 4210 0.5904 0.1800 0.2759 0.4147 0.4086 0.4116 0.3231

CONE 513 67 2335 0.3564 0.1267 0.1869 0.3274 0.4017 0.3626 0.1519

LinkC 2201 100 4068 0.5319 0.1040 0.1740 0.4744 0.4038 0.4377 0.2744

SR-MCL 3698 24 4976 0.1277 0.0112 0.0205 0.4192 0.1999 0.2894 0.0481

CONE and LinkC are short for ClusterONE and LinkComm, respectively
Bold values denote the best scores corresponding to specific criteria

the percentages of the predicted protein complexes that
are significantly enriched with at least one GO term and
the total number of GO terms that are enriched in the
predicted complexes in Table 4. We find that our FLCD
achieves the best percentages of the enriched predicted
protein complexes in SceDIP and SceIntAct PPI networks.
ClusterONE obtains the best percentages for SceBG and
SceMINT PPI networks but with the smaller number of
GO terms enriched in the detected complexes because
ClusterONE may remove meaningful functional mod-
ules in its post-processing step. Furthermore, the protein
complexes detected by FLCD are significantly associated
with the largest number of GO terms over all competing
algorithms on all four PPI networks.
To further examine the statistical significance of the

complexes detected by the competing algorithms, we
compare the p-values of the complexes under GO terms of
biological process, molecular function, and cellular com-
ponent domains. We use the lowest p-value for each pre-
dicted complex and show the comparison of the statistical
significance of the complexes detected by all competing
algorithms in Fig. 3. The y-axis of Fig. 3 represents the
negative log-p-values while the x-axis is the ordered list
of the complexes detected by all competing algorithms
in terms of their negative log-p-values. Since complexes
with significant biological relevance have lower p-values,
higher values in Fig. 3 represent the higher quality of
the detected complexes. As shown in Fig. 3, for all four

Table 4 Comparison by GO enrichment analysis

Network Method # complex % enriched # GO

SceDIP FLCD 2134 72.2 1442

CONE 380 71.8 852

LinkC 1839 67.4 1273

SR-MCL 2851 23.5 957

SceBG FLCD 4027 72.4 1800

CONE 522 77.4 1282

LinkC 5382 39.8 1554

SR-MCL 1862 56.4 1702

SceIntAct FLCD 3394 62.4 1414

CONE 496 65.6 1031

LinkC 1297 46.5 1129

SR-MCL 1079 44.7 888

SceMINT FLCD 2483 62.3 1416

CONE 513 59.4 954

LinkC 2201 32.1 1123

SR-MCL 3698 19.7 856

“% enriched” presents the percentage of complexes that are enriched with at least
one GO term.
“# GO” denotes the number of enriched GO terms
Bold values denote the best scores corresponding to specific criteria
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Fig. 3 Statistical significance of the predicted complexes of all competing algorithms

yeast PPI networks, in addition to the fact that FLCD
detects significantly more GO-enriched complexes, FLCD
clearly outperforms other competing algorithms because
the curves of FLCD are consistently on top of the others.
The outperformance of FLCD further demonstrates that
network structure that has dense internal connectivity and
sparse external connectivity can better depict complexes
of biological significance and FLCD provides an effective
way to predict complexes with the desired network struc-
ture through explicitly taking care of internal and external
connectivity of potential subnetworks.

Examples of predicted complexes
We further show the differences between the competing
algorithms by illustrating the predicted complexes corre-
sponding to two specific reference protein complexes. The
first reference protein complex is the Smc5-Smc6 com-
plex. In Fig. 4, the Smc5-Smc6 complexes predicted by
FLCD, ClusterONE, LinkComm, and SR-MCL are dis-
played from (a.1) to (a.4), respectively. We notice that
FLCD successfully identifies the Smc5-Smc6 complex as
shown in Fig. 4(a.1). ClusterONE fails to detect the pro-
tein annotated as NSE4, probably due to the inaccuracy of
the greedy algorithm used in ClusterONE. Also, we find
that the protein annotated as GEX1 only interacts with
the protein NSE3 but it is falsely added to the Smc5-Smc6
complex by ClusterONE. Because ClusterONE focuses
on the separability of a complex but does not directly
consider the internal density of the complex, it may mis-
takenly add proteins with small degrees into the final

result. The complex in Fig. 4(a.3) predicted by LinkComm
contains false positives and false negatives since the sim-
ilarities between interactions used in LinkComm can not
describe the topological structure of protein complexes.
In Fig 4(a.4), we find out that the Smc5-Smc6 complex
predicted by SR-MCL consists of many false positives.
However, it is hard to explain the performance of SR-MCL
on predicting the Smc5-Smc6 complex due to the unclear
working mechanism of SR-MCL.
Similarly, we show the predicted RNase complexes by

all competing algorithms in Fig. 4 from (b.1) to (b.4). In
(b.1), we observe that FLCD detects all proteins in the
reference RNase complex butmistakenly includes the pro-
tein SKI7 due to the existence of false positive interactions
between SKI7 and proteins in RNase complex. In addition
to SKI7, the predicted complex by ClusterONE (shown in
Fig. 4(b.2)) contains two false positive proteins with very
small degrees due to the ignorance of the internal density.
Because LinkComm does not explicitly characterize the
separability of the complexes, it also recruits some false
positive proteins as clearly shown in Fig. 4(b.3). For the
complex obtained by SR-MCL, we note that it has lots of
false positive proteins and the topological property of the
predicted complex is not clear.

Conclusions
We propose an algorithm FLCD to predict protein com-
plexes in protein-protein interaction networks. FLCD can
better characterize the topological structure of a pro-
tein complex, which is densely connected inside and well
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Fig. 4 Illustrations of predicted complexes in SceBG network. a.1 to a.4 are Smc5-Smc6 complexes predicted by FLCD, ClusterONE, LinkComm, and
SR-MCL, respectively. Nodes in blue are proteins in the reference Smc5-Smc6 complex and nodes in white are proteins outside the reference
Smc5-Smc6 complex. Nodes in yellow are proteins failed to be detected by the corresponding algorithms. b.1 to b.4 are RNase complexes predicted
by FLCD, ClusterONE, LinkComm, and SR-MCL, respectively. Nodes in red are proteins in the reference RNase complex and nodes in white are proteins
outside the reference RNase complex

separated from the rest of the networks. We compare
FLCDwith other three state-of-the-art algorithms on pro-
tein complex prediction. The comparison results show
that FLCD achieves superior performances. Furthermore,
GO enrichment analysis of the results of the competing
algorithms demonstrates that FLCD finds more biologi-
cally meaningful complexes, within which proteins tend
to be in the same cellular components and have sim-
ilar functions and/or participate in the same biological
processes.

Methods
Terminologies and definitions
Let an undirected graph G = (V ,E) represent a PPI net-
work, where V denotes the set of proteins in G and E is
the interaction set. A is the adjacency matrix of G with
Aij = Aji and Aij = 1 denoting node i interacts with node
j and Aij = 0 otherwise. The degree matrix D of G is a
diagonal matrix with Dii = di, where di = ∑

j Aij is the
number of interactions connecting to protein i.
For a set S of proteins, the conductance of S in G is

defined as [17]

φ(S) = |E(S, S̄)|
min

{
vol(S), vol(S̄)

} , S ∪ S̄ = V , (5)

where E(S, S̄) denotes the edge cut, the set of edges
between the set S and its complement set S̄, | · | denotes
the set size, and vol(T) = ∑

i∈T di is the number of all

incident interactions of the set T. Here we make a mild
assumption that vol(S) 	 vol(V ) for a small protein com-
plex S in the large-scale PPI network G, which means
vol(S) = min

{
vol(S), vol(S̄)

}
. Hence, we have

φ(S) = |E(S, S̄)|
vol(S)

=
∑

i

(
DS
ii −

∑
j AS

ij

)

∑
i DS

ii
, (6)

where AS is the adjacency matrix of the induced subnet-
work with respect to set S and DS is the degree matrix for
the nodes in S, where DS

ii = ∑
j Aij = di for i ∈ S. For the

same set S, the density of S is defined as [18]

D(S) = |E(S, S)|
|S| = 1

2

∑
ij AS

ij
∑

i 1i∈S
, (7)

where 1i∈S is the indicator function depending onwhether
i ∈ S.

Motivation
FLCD is motivated by conductance minimization to iden-
tify well separated subnetworks in a given network. How-
ever, FLCD can overcome the problem of conductance
minimization, which pays no attention to the internal con-
nectivity within subnetworks as potential protein com-
plexes. Figure 5 shows a motivating example: We can find
two complexes enclosed in the red dotted lines in the
network based on conductance minimization. The con-
ductances of the complexes within red dotted lines are 2

11
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Fig. 5 A motivating example for FLCD. Red dotted linesmark the
complexes detected based on conductance minimization. Blue
dashed linesmark the complexes predicted by our FLCD algorithm.
Nodes with green border lines are removed by FLCD due to the lack of
dense interactions

and 2
17 and the conductances of complexes within blue

dashed lines are 3
10 and 3

16 . Obviously, the conductances
of the complexes within red dotted lines are lower than
the complexes within blue dashed lines, indicating that the
complexes within red dotted lines are topologically more
separable than the complexes within blue dashed lines.
However, the complexes within the blue dashed lines are
more likely to be the desired complexes since the nodes
with green border lines can not be confidently grouped
into potential protein complexes due to their low degrees.
FLCD explicitly considers both the separability and

internal edge density of complexes in two steps respec-
tively. At the first step, it takes care of the separability
of complexes by ensuring low conductance to hope for
the complexes to have unique biological functions. At
the second step, FLCD preserves the densely connected
parts of the complexes identified in the first step. Because
PPI networks are noisy and typically sparse, instead of
finding cliques, we use the definition of internal density
in (7) to search for dense subnetworks as final predicted
complexes.

Searching for a low-conductance setH∗
v

Given a starting protein v, our goal is to find a protein
set H∗

v with low conductance including v. We first apply
the algorithm proposed in [17] to find a potential set H
with low conductance, then the minimum-conductance
set H∗

v in H is identified through solving a mixed integer
programming (MIP) problem exactly.
Following [17], a low-conductance set including v can

be efficiently approximated via the personalized PageRank
vector of v. The personalized PageRank vector p(α, v) of v
on G is the stationary distribution of the random walk on
G, in which at every step, the randomwalker has the prob-
ability of α to restart the random walk at v and otherwise
performs a lazy random walk. Mathematically, p(α, v) is
the unique solution to

p(α, v) = αev + (1 − α)p(α, v)W , (8)

where α ∈ (0, 1] is the “teleportation” constant, ev is the
indicator vector of v andW = 1

2 (I+D−1A) is the underly-
ing probability transition matrix of the lazy random walk.
We apply the local algorithm in [17] to efficiently approx-
imate p̂ ≈ p(α, v). Then we sort the nodes based on p̂ and
attain an ordered setH = {v1, v2, . . . , vn}, whose elements
satisfy p̂(vi) > p̂(vi+1). Inspired by PageRank-Nibble [17]
that sweeps the ordered setH to get the low-conductance
set, we propose to find the minimum low-conductance set
within a subnetwork of size k, which consists of the top
k elements in H, by solving a MIP problem. We take the
top k elements out of H, which are more likely to com-
prise a low-conductance set with v, and put them in H.
The minimum-conductance setH∗

v inH can be derived by
solving the following optimization problem based on (6):

min:
xT

(
DH − AH)

x
xTdH

s.t. xv = 1, xi ∈ {0, 1},
(9)

where x is a binary vector with xi = 1 indicating that node
i inH is assigned intoH∗

v and xi = 0 otherwise; and dH is a
vector containing the degrees of every node inH. We force
node v to be in the low-conductance set by setting xv = 1.
By algebraic manipulations, (9) can be transformed into
the following equivalent formulation:

min: z

s.t. z
∑

i
xidHi −

∑

i

∑

j

(
DH
ij − AH

ij

)
xixj ≥ 0,

xv = 1, xi ∈ {0, 1}.

(10)

After using standard techniques [24] to linearize zxi and
xixj, the optimization problem can be solved by any MIP
solver, such as Gurobi [25]. Because the size of |H| = k is
much smaller than |V | = n and we only focus on identi-
fying one low-conductance set, we can efficiently obtain
the minimum-conductance set H∗

v in H by solving (10)
exactly.
If node v is in a connected component of size k′ and

we set k > k′, then we might have a trivial solution that
the low-conductance set is the connected component with
conductance 0. To avoid this, we apply the following pro-
cedure. We check every derived low-conductance set of
size k′ to see whether it has exactly 0 conductance, which
implies that it is a connected component with size k′. If
that is the case, we then set k = k′ − 1, and re-solve the
MIP to get a non-trivial solution.

Conservation of the densest subnetworkC∗
v inH∗

v
The induced subnetwork Gv with respect to the protein
setH∗

v is well separated from the rest of the network; how-
ever, there may exist nodes with low degrees in H∗

v . As
illustrated in Fig. 5, to remove low-degree nodes (nodes
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with green border lines) as well as reserve densely con-
nected subnetworks, we apply the definition of the inter-
nal density (7) to find the densest subnetwork in H∗

v .
Because the problem size is small for such a local opti-
mization problem, we can again take the full advantages
of the power of MIP solvers. The node set C∗

v ∈ H∗
v cor-

responding to the densest subnetwork can be identified
based on (7) by deriving the exactly optimal solution to
the following MIP problem:

max:
rTAH∗

v
ij r

rT1
s.t. ri ∈ {0, 1},

(11)

where 1 is an all-one vector and r is the binary vector
indicating the memberships of the nodes from H∗

v in the
densest subnetwork. This optimization problem explicitly
searches for the subnetwork with the highest internal den-
sity and it can be transformed into the equivalent problem,
as similarly done in (10):

max: w

s.t. w
∑

i
ri −

∑

i

∑

j
AH∗

v
ij rirj ≤ 0,

ri ∈ {0, 1},

(12)

which can also be cast into the MIP framework with the
exactly optimal solution obtained by using standard MIP
solvers after linearization [24].

The FLCD algorithm
The step-by-step procedure of FLCD algorithm is given
in Table 5. The FLCD algorithm screens every protein
with degree higher than two. For each selected protein,
the FLCD algorithm first searches for the minimum-
conductance set around it and then finds the densest
subnetwork in the minimum-conductance set, which is

Table 5 The FLCD algorithm

Algorithm: The FLCD Algorithm

Input:S = V and k = 20.

Output: A set of predicted complexes R.

1 While (∃v ∈ S and dv ≥ 3)

2 Estimate p̂ ≈ p(α, v).

3 Sort nodes in V based on p̂ and collect the top k nodes in Hv .

4 Finding the lowest-conductance set H∗
v ∈ Hv based on (10).

5 Identifying the node set C∗
v of the densest subnetwork in H

∗
v based

on (12).

6 Considering C∗
v as one predicted complex, let R = {R, C∗

v } and
S = S − v.

7 EndWhile

8 Remove duplicated complexes and complexes with size smaller than
three in R.

considered as a predicted complex. After screening every
possible proteins, we remove the duplicated complexes
and complexes with size smaller than three. There is only
one parameter k for the FLCD algorithm, where k can be
considered as the upper bound of the sizes of the desired
protein complexes. Also, the MIP problems (10) and (12)
are both NP hard. The actual computational complexity
of solving these MIP problems depends on the problem
size of these local problems determined by k. The smaller
k is, the less time it takes the FLCD algorithm to search for
subnetworks as potential protein complexes. Throughout
the experiments in this paper, we set k = 20.
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