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Abstract

Background: Discrete-state stochastic models have become a well-established approach to describe biochemical
reaction networks that are influenced by the inherent randomness of cellular events. In the last years several methods
for accurately approximating the statistical moments of such models have become very popular since they allow an
efficient analysis of complex networks.

Results: We propose a generalized method of moments approach for inferring the parameters of reaction networks
based on a sophisticated matching of the statistical moments of the corresponding stochastic model and the sample
moments of population snapshot data. The proposed parameter estimation method exploits recently developed
moment-based approximations and provides estimators with desirable statistical properties when a large number of
samples is available. We demonstrate the usefulness and efficiency of the inference method on two case studies.

Conclusions: The generalized method of moments provides accurate and fast estimations of unknown parameters
of reaction networks. The accuracy increases when also moments of order higher than two are considered. In addition,
the variance of the estimator decreases, when more samples are given or when higher order moments are included.

Keywords: Biochemical reaction network, Stochastic model, Parameter estimation, Generalized method of moments

Background
A widely-used approach in systems biology research is
to design quantitative models of biological processes and
refine them based on both computer simulations and
wet-lab experiments. While a large amount of sophisti-
cated parameter inference methods have been proposed
for deterministic models, only few approaches allow the
efficient calibration of parameters for large discrete-state
stochastic models that describe stochastic interactions
between molecules within a single cell. Since research
progress in experimental measurement techniques that
deliver single-cell and single-molecule data has advanced,
the ability to calibrate such models is of key importance.
For instance, the widely-used flow cytometric analysis
delivers data from thousands of cells which yields sample
means and sample variances of molecular populations.
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Here, we focus on the most common scenario: a dis-
crete stochastic model of a cellular reaction network with
unknown reaction rate constants and population snap-
shot data such as sample moments of a large number of
observed samples. The state of the model corresponds to
the vector of current molecular counts, i.e., the number
of molecules of each chemical species, and chemical reac-
tions trigger state transitions by changing the molecular
populations. A system of ordinary differential equations,
the chemical master equation [1], describes the evolution
of the state probabilities over time.
A classical maximum likelihood (ML) approach, in

which the likelihood is directly approximated, is possi-
ble if all populations are small [2] or if the model shows
simple dynamics (e.g. multi-dimensional normal distribu-
tion with time-dependent mean and covariance matrix)
such that the likelihood can be approximated by a normal
distribution [3]. In this case, the likelihood (and its deriva-
tives) can usually be approximated efficiently and global
optimization techniques are employed to find parameters
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that maximize the likelihood. However, if large popula-
tions are present in the system then direct approximations
of the likelihood are unfeasible since the underlying sys-
tem of differential equations contains one equation for
each state and the main part of the probability mass of the
model distributes on an intractably large number of states.
Similarly, if the system shows complex dynamics such as
multimodality, approximations of the likelihood based on
Gaussian distributions become inaccurate.
In the last years several methods have been developed to

accurately simulate the moments of the underlying prob-
ability distribution up to a certain order k over time [4–6].
The complexity of these simulation methods is therefore
independent of the population sizes but, for large k, the
corresponding differential equationsmay become stiff and
lead to poor approximations. However, reconstructions
of complex distributions from their moments show that
for many systems already for small k (e.g. k ∈ {4, . . . , 8})
the moments contain sufficient information about the dis-
tribution such as the strength and location of regions of
attraction (i.e. regions of the state space containing a large
proportion of the probability mass) [7].
For models with complex distributions such as multiple

modes or oscillations, the accuracy and the running time
of the moment approximation can be markedly improved,
when conditional moments are considered in combina-
tion with the probabilities of appropriately chosen system
modes such as the activity state of the genes in a gene reg-
ulatory network [8–11]. Recently a full derivation of the
conditional moment equations was derived and numerical
results show that when the maximum order of the con-
sidered moments is high, the number of equations that
have to be integrated is usually much smaller for the con-
ditional moments approach and the resulting equations
are less stiff [12]. In addition, the approximated (uncon-
ditional) moments are more accurate when the same
maximal order is considered.
An obvious parameter inference approach is the match-

ing of the observed sample moments with those of the
moment-based simulation of the model. Defining the dif-
ferences between sample and (approximated) population
moments as cost functions that depend on the parame-
ters, an approach that minimizes the sum of the squared
cost functions seems reasonable. However, in a simple
least-squares approach low moments such as means and
(co-)variances contribute equally to the sum of squared
differences as higher moments, whose absolute magni-
tudes aremuch higher (even if they are centralized).More-
over, correlations between the different cost functions
may exist and thus necessitate an approach where also
products of two different cost functions are considered.
The generalized method of moments (GMM) that is

widely used in econometrics provides an estimator that
is computed after assigning appropriate weights to the

different cost function products [13]. TheGMMestimator
has, similar as theML estimator, desirable statistical prop-
erties such as being consistent and asymptotically nor-
mally distributed. Moreover, for optimally chosen weights
it is an asymptotically efficient estimator, which implies
that (asymptotically) it has minimum variance among all
estimators for the unknown parameters.
In this paper we explore the usefulness of the GMM

for moment-based simulations of stochastic reaction net-
works. We focus on two particular estimators that are
commonly used in econometrics: the two-step estima-
tor of Hansen [13] and the demean estimator [14]. We
study the accuracy and variance of the estimator for dif-
ferent maximal moment orders and different sample sizes
by applying the GMM to two case studies. In addition,
we show that poor approximations of some higher order
moments have a strong influence on the quality of the
estimation. Interestingly, we see that the additional infor-
mation about the covariances of the cost functions can
lead to identification of all parameters. In addition, the
variance of the estimator becomes smaller when higher
order moments are included. Compared to the simple
least-squares approach, the GMM approach yields very
accurate estimates.

Methods
Stochastic chemical kinetics
Our inference approach relies on a Markov modeling
approach that follows Gillespie’s theory of stochastic
chemical kinetics. We consider a well-stirred mixture of
n molecular species in a volume with fixed size and fixed
temperature and represent it as a discrete-state Markov
process {X(t), t ≥ 0} in continuous-time [15]. The ran-
dom vector X(t) = (X1(t), . . . ,Xn(t)) describes the chem-
ical populations at time t, i.e., Xi(t) is the number of
molecules of type i ∈ {1, . . . , n} at time t. Thus, the state
space of X is Z

n+ = {0, 1, . . .}n. The state changes of X
are triggered by the occurrences of chemical reactions.
Each of the m different reaction types has an associated
non-zero change vector vj ∈ Z

n (j ∈ {1, . . . ,m}), where
vj = v−

j +v+
j such that v−

j (v+
j ) contains only non-positive

(non-negative) entries and specifies how many molecules
of each species are consumed (produced) if an instance
of the reaction occurs, respectively. Thus, if X(t) = x
for some x ∈ Z

n+ with x + v−
j being non-negative, then

X(t+dt) = x+vj is the state of the system after the occur-
rence of the j-th reaction within the infinitesimal time
interval [ t, t+dt). W.l.o.g. we assume here that all vectors
vj are distinct.
We use α1, . . . ,αm to denote the propensity functions

of the reactions, where αj(x) · dt is the probability that,
given Xt = x, one instance of the j-th reaction occurs
within [ t, t + dt). Assuming law of mass action kinet-
ics, αj(x) is chosen proportional to the number of distinct
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reactant combinations in state x. An example is given
in Table 1, where the first reaction gives as change vec-
tors, for instance, v−

1 = (−1, 0, 0), v+
1 = (0, 1, 0), v1 =

(−1, 1, 0). Note that, given the initial state x = (1, 0, 0), at
any time either the DNA is active or not, i.e. x1 = 0 and
x2 = 1, or x1 = 1 and x2 = 0. Moreover, the state space of
the model is infinite in the third dimension. Although our
inference approach can be used for any model parameter
in the sequel we simply assume that the proportionality
constants cj are unknown and have to be estimated based
on experimental data.
For x ∈ Z

n+ and t ≥ 0, let pt(x) denote the probability
P (X(t) = x). Assuming fixed initial conditions p0 the evo-
lution of pt(x) is given by the chemical master equation
(CME) [1]

∂
∂t pt(x) = ∑

j:x−v−
j ≥0

αj(x−vj)pt(x−vj) − αj(x)pt(x),

which is an ordinary first-order differential equation that
has a unique solution under certain mild regularity con-
ditions. Since for realistic systems the number of states
is very large or even infinite, applying standard numer-
ical solution techniques to the CME is infeasible. If the
populations of all species remain small (at most a few
hundreds) then the CME can be efficiently approximated
using projection methods [16, 17] or fast uniformization
methods [18, 19]. Otherwise, i.e., if the system contains
large populations, then analysis methods with running
times independent of the population sizes have to be used
such as moment closure approaches [4–6] or methods
based on van Kampen’s system size expansion [20, 21]. For
both approaches, accurate reconstructions of the underly-
ing probability distribution, i.e., the solution of the CME,
are possible [7, 21].

Moment-based analysis
From the CME it is straightforward to derive the following
equation for the derivative of the mean of a polynomial
function T : Zn+ → R on X(t).

d
dt E[T(X(t))]

=
m∑

j=1
E

[
αj(X(t))·(T(X(t) + vj) − T(X(t))

)] (1)

Table 1 Simple gene expression model [44]: The evolution of the
molecular populations DNAON, DNAOFF, and mRNA is described
by the random vector X(t)=(X1(t), X2(t),X3(t)), respectively

Reactions Propensities Intervals

DNAON → DNAOFF α1(x) = b · x1 b ∈ [0, 0.5]

DNAOFF → DNAON α2(x) = a · x2 a ∈ [0, 0.5]

DNAON → DNAON+ mRNA α3(x) = c · x1 c ∈ [0, 0.5]

Omitting the argument t of X and choosing T(X) =
Xi,X2

i , . . . yields the following equations for the (exact)
time evolution of the k-th moment E[Xk

i ] of the distribu-
tion for the i-th species.

d
dt E[ (Xi)k]

=
m∑

j=1
E[αj(X) · (

(Xi + vji)k − (Xi)k
)
] , (2)

where vji refers to the i-th component of the change vec-
tor vj. In a similar way, equations for mixed moments are
derived.
If all reactions are at most monomolecular (1 ≥ ∑

i |v−
ji |

for all j), then no moments of order higher than k appear
on the right side (also in the mixed case) and we can
directly integrate all equations for moments of at most
order k. However, most systems do contain bimolecu-
lar reactions (in particular those with complex behavior
such as multistability). In this case we consider a Taylor
expansion of the multivariate function

f (X) = αj(X) · (
T(X + vj) − T(X)

)

about the mean μ := E[X]. It is easy to verify that, when
applying the expectation to the Taylor sum, the right side
only contains derivatives of f at X = μ, which are multi-
plied by central moments of increasing order. For instance,
for k = 1 and a single species system with n = 1, Eq. (2)
becomes

d
dt E[ (Xi)] =

m∑

j=1
vjiE[αj(X)]

=
m∑

j=1
vji

(
αj(μ) + E[(X−μ)]

1! · ∂
∂xαj(μ)

+E[(X−μ)2]
2! · ∂2

∂x2 αj(μ) + . . .
)

In the expansion, central moments of higher order
may occur. For instance, in the case of bimolecular reac-
tions, the equations for order k moments involve central
moments of order k + 1 since second order derivatives
are non-zero. By converting the non-central moments to
central ones and truncating the expansion at some fixed
maximal order k, we can close the system of equations
when we assume that higher order central moments are
zero. A full derivation of the moment equations using
multi-index notation (as required for n > 1) can be found
in [6].
The accuracy of the inference approach that we pro-

pose in the sequel depends not only on the information
given by the experimental data but also on the accuracy
of the approximated moments. Different closure strate-
gies have been suggested and compared in the last years
showing that the accuracy can be improved by mak-
ing assumptions about the underlying distribution (e.g.
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approximate log-normality) [22, 23]. In addition, the accu-
racy of moment-closure approximations has been theoret-
ically investigated [24].

Hybrid approaches
Compared to deterministic models that describe only
average behaviors, stochastic models provide interesting
additional information about the behavior of a system.
Although this comes with additional computational costs,
it is in particular for systems with complex behavior,
such as multimodality or oscillations, of great importance.
Often the underlying source of multiple modes are dis-
crete changes of gene activation states that are described
by chemical species whose maximal count is very small
(e.g. 1 for the case that the gene is either active, state 1,
or inactive, state 0). Then the moment-based approaches
described above can be improved (both in terms of accu-
racy and computation time) by considering conditional
moments instead [8–10, 12, 25]. The idea is to split the set
of species into species with small and large populations
and consider the moments of the large populations condi-
tioned on the current count of the small populations. For
the small populations, a small master equation has to be
solved additionally to the moment equations to determine
the corresponding discrete distribution. More specifically,
if x̂ is the subvector of x that describes the small popula-
tions and x̃ is the subvector of the large populations (i.e.
x = (x̂, x̃)), then for the distribution of x̂ we have

d
dt pt(x̂) = ∑

j:x̂−v̂j≥0
E[αj(X) | X̂ = x̂ − v̂j] pt(x̂ − v̂j)

− ∑
j E[αj(X) | X̂ = x̂] pt(x̂)

where v̂j is the corresponding subvector of vj. Using Taylor
expansion, the conditional expectations of the propensi-
ties can, as above, be expressed in terms of conditional
moments of the large populations. In addition, equations
for the conditional moments of the large populations can
be derived in a similar way as above. For instance, the
partial mean E[ X̃i | x̂] pt(x̂) follows the time evolution

∂
∂t

(
E[ X̃i | x̂] pt(x̂)

)

= ∑

j:x̂−v̂j≥0
E[ (X̃i + vij)αj(X) | X̂ = x̂ − v̂j] pt(x̂ − v̂j)

− ∑
j E[ X̃iαj(X) | X̂ = x̂] pt(x̂)

where on the right side again Taylor expansion can be used
to replace unknown conditional expectations by condi-
tional moments. As above a dependence on higher condi-
tional moments may arise and a closure approach has to
be applied to arrive at a finite system of equations. Uncon-
ditional moments can then be derived by summing up
the weighted conditional moments. It is important to note

that if pt(x̂) = 0 then algebraic equations arise turning
the equation system into a system of differential-algebraic
equations, which renders its solution more difficult (see
[12, 26] for details).
In Fig. 1 we give an example for a comparison of the

accuracy of the hybrid approach and the standardmoment
closure (assuming that all central moments above a fixed
maximal order are zero) for one of our case studies. As
“exact” moment values we chose the average of 500,000
samples generated by the stochastic simulation algorithm
(SSA) [27] and considered the absolute difference to the
approximated moments of one chemical population until
a maximal order of four. Since for our case studies we
assumed 10,000 samples we additionally plot the (approx-
imated) standard deviation of the 50 sample means taken
from batches of 10,000 samples. The moments computed
based on the hybrid approach show a smaller error than
those computed using the standard moment closure and
lie within the deviations given by the sample moments.
For the example in Fig. 1 we have 126 equations for the
standard approach up to an order of four. In the hybrid
case there are 14 moment equations and one equation for
the mode probability per mode leading to a total number
of 45 equations. However, reductions are possible for the
standard approach when the model structure is exploited
[28]. We do not make use of these reductions here but
choose the hybrid approach mainly because it gives more
accurate results for the (unconditional) moments. This
strongly improves the quality of the estimated parameters
as demonstrated in the “Results” section.

Generalized method of moments
We assume that observations of a biochemical network
were made using single-cell analysis that gives population

Fig. 1 Absolute error of the first four moments of P1 for the exclusive
switch model, where the moments are either computed based on a
standard moment closure approach or a hybrid approach. The
maximal order of the considered moments is 5
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snapshot data (e.g. from flow cytometry measurements).
Typically, large numbers (about 5,000–10,000 [29–31]) of
independent samples can be obtained where each sample
corresponds to one cell. It is possible to simultaneously
observe one or several chemical populations at a time in
each single cell. In the sequel, we first describe the infer-
ence procedure for a single observation time point and a
single chemical species that is observed. Later, we extend
this to several time points and species.
For a fixed measurement time t and a fixed index i of the

observed population we can define the r-th order sample
moment as

m̂r = 1
N

N∑

�=1
Yr

� ,

where Y� is the �-th sample of the observed molecular
count of the i-th species at time t and there are N samples
in total. For large N, the sample moments are asymptoti-
cally unbiased estimators of the population moments.
Let θ be a vector of, say, q ≤ m unknown reaction rate

constants1, for which some biologically relevant range is
known. Moreover, let mr be the r-th theoretical moment,
i.e., mr(θ) := E[Yr

� ]. In the sequel we also simply write
Y instead of Y� whenever Y appears inside the expecta-
tion operator or when the specific index of the sample is
not relevant. An obvious inference approach would be to
consider the ordinary least squares estimator

θ̂ = argmin
θ

k∑

r=1

(
m̂r − mr(θ)

)2 , (3)

where k is the number of moment constraints. Under
certain conditions related to the identification of the
parameters as discussed below, this estimator is consis-
tent (converges in probability to the true value of θ ) and
asymptotically normal. However, its variance may be very
high. This is due to the fact that for increasing order the
variance of the sample moments increases and so does the
variance of the estimator. This problem can be mitigated
by choosing appropriate weights for the summands in (3).
Moreover, since correlations between the cost functions

gr(θ) = m̂r − mr(θ)

exist, a more general approach that considers mixed terms
is needed. This leads to a class of estimators, called gen-
eralized method of moments (GMM) estimators that have
been introduced by Hansen [13]. The idea is to define the
estimator as

θ̂ = argmin
θ

g(θ)′Wg(θ) (4)

where g(θ) is the column vector with entries gr(θ), r =
1, . . . , k, and W is a positive semi-definite weighting

matrix. Note that by defining fr(Y , θ) = Yr−mr(θ)we see
that

gr(θ) = 1
N

∑

�

fr(Y�, θ) = 1
N

∑

�

Yr
� − mr(θ)

is the sample counterpart of the expectation E[ fr(Y , θ)].
The latter satisfies

θ0 = argmin
θ

E[ f(Y , θ)]′ WE[ f(Y , θ)] ,

where f(Y , θ) is the column vector with entries fr(Y , θ)

and θ0 is the true value of θ . Note that the choice W = I
gives the least-squares estimator with k terms while for
general W there are k·(k+1)

2 terms in the objective func-
tion (with k being the dimension of g(θ)). In addition, we
remark that in general W may depend on θ and/or the
samples Y�.
Here we assume that identification of θ is possible, i.e.,

we require that q ≤ k, i.e., the number of themoment con-
straints used is at least as large as the number of unknown
parameters and

E[ f(Y , θ)]= 0 if and only if θ = θ0.

In addition, the theoretical momentsmr(θ) should not be
functionally dependent (see Chapter 3.3 in [32]) to ensure
that the information contained in the moment conditions
is sufficient for successfully identifying the parameters.
By applying the central limit theorem to the sample

moments, it is possible to show that the GMM estima-
tor is consistent and asymptotically normally distributed
and that its variance becomes asymptotically minimal if
the matrix W is chosen such that it is proportional to
the inverse of the covariances between the Yr

� [13]. This
result is intuitive since usually higher moments might be
more volatile than others and, thus, it makes sense to nor-
malize the errors in the moments by the corresponding
covariance. Formally, we define Y� as the random vector
with entries (Y�)

r for r = 1, . . . , k and, as before, omit the
subindex � if it is not relevant. Then,

F(θ0) = COV [Y,Y]= E[ f(Y , θ0)f(Y , θ0)T ]

and choosingW ∝ F−1 will give an estimator with small-
est possible variance, i.e., it is asymptotically efficient in
this class of estimators [13, 32].
Since F depends on the true value θ0, a two-step updat-

ing procedure has been suggested [13] during whichW is
chosen as the identity matrix I in the first step such that an
initial estimate θ̃ is computed. In a second step, F is esti-
mated by the sample counterpart of E[ f(Y , θ̃ )f(Y , θ̃ )T ] ,
i.e.,

F̂1(θ̃) = 1
N

N∑

�=1
f(Y�, θ̃ )f(Y�, θ̃ )T . (5)
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If, however, the model is “misspecified”, i.e., there is no
θ0 for which

E[ f(Y , θ0)]= 0,

then the above estimator is no longer consistent. In partic-
ular, if the theoretical moments are poorly approximated,
it is likely that also the accuracy of the resulting estimates
is poor. An estimator for F that is consistent is then given
by [32]

F̂2 = 1
N

N∑

�=1
(Y� − Y)(Y� − Y)T , (6)

where Y is the vector with entries 1
N

∑N
�=1 Yr

�. In the
sequel we refer to the estimator based on (6) as the
demean estimator. This estimator removes the inconsis-
tencies in the covariance matrices estimated from the
sample moments by “demeaning”. Since moment-based
analysis methods usually give approximations of the
moments and not the exact values, we consider both, the
demean estimator defined by (6) and the estimator of the
2-step procedure in (5) for our numerical results.
The estimation procedure described above can be gen-

eralized to several dimensions by also using mixed sam-
ple moments instead of only m̂r and mixed theoretical
moments instead of onlymr(θ). For instance, formoments
up to order two and two simultaneously observed species
X and Y, we use the cost functions

g1(θ) = 1
N

∑N
�=1 X� − E[X� | θ ]

g2(θ) = 1
N

∑N
�=1 Y� − E[Y� | θ ]

g3(θ) = 1
N

∑N
�=1 X�Y� − E[X�Y� | θ ]

g4(θ) = 1
N

∑N
�=1 X2

� − E[X2
� | θ ]

g5(θ) = 1
N

∑N
�=1 Y 2

� − E[Y 2
� | θ ] .

In the same way, we can extend the estimators F̂1 and
F̂2 to several dimensions. For instance, the covariance
between X�Y� and X2

� can be estimated as

1
N

N∑

�=1
(X�Y� − XY )(X2

� − X2),

where again we use ∗ to denote the sample mean operator.
If, instead of snapshot data for a single observation time,

independent samples for different times are available then
the GMM estimator can also be easily generalized to

θ̂ = argmin
θ

tf∑

t=t0
g(t)(θ)′W (t)g(t)(θ). (7)

Here, for each time point t ∈ {t0, . . . , tf } the vector of
cost functions g(t) is calculated as before and the min-
imum is taken over the sum of these uncorrelated cost

functions. Note that for each observation time point a
weight matrix W (t) has to be computed. In the two-
step approach, the initial weight matrices are all equal to
the identity matrix and then in the second step differ-
ent weight matrices may arise since the estimator of F
depends on Y, which in turn depends on the distribution
of the model at the specific time t.

Results
To analyze the performance of the GMM we consider
two case studies (see Additional file 1), the simple gene
expression model in Table 1 and a network of two genes
with mutual repression, called exclusive switch [33]. The
reactions of the exclusive switch are listed in Table 2.
All propensities follow the law of mass action. For the
parameters that we chose, the corresponding probability
distribution is bi-modal.
For fixed reaction rate constants and initial condi-

tions, we used the SSA to generate trajectories of the
systems and record samples of the size of the corre-
sponding protein/mRNA populations. In addition, we
used the software tool SHAVE [34] to generate moment
equations both for the standard moment closure and for
the hybrid approach. In SHAVE the partial moments are
integrated instead of the conditional moments such that
the differential-algebraic equations are transformed into
a system of (ordinary) differential equations after trun-
cating modes with insignificant probabilities. Then an
accurate approximation of the solution using standard
numerical integration methods can be obtained. The sys-
tem of moment equations is always closed by setting all
central moments of order > k to zero. We used for the
inference approach only the moments up to order k − 1
since the precision of the moments of highest order k is
often poor. SHAVE allows to export the (hybrid) moment
equations as aMATLAB-compatible m-file. We then used
MATLAB’s ode45 solver, which is based on a fifth order
Runge-Kutta method, to integrate the (hybrid) moment
equations. Note that for the gene expression example, the
moment equations are exact since all propensities are lin-
ear. Thus, even an analytic solution is possible for this
system.

Table 2 Exclusive switch model [33]: Two different proteins P1
and P2 can bind to a promotor region on the DNA. If P1 is bound
to the promotor the production of P2 is inhibited and vice versa.
In the free state both proteins can be produced

Reactions, i = 1, 2 Rate constant Interval

DNA → DNA + Pi pi [0.5,1.5]

DNA.Pi → DNA.Pi + Pi pi [0.5,1.5]

Pi → ∅ di [0,0.05]

DNA + Pi → DNA.Pi bi [0,0.1]

DNA.Pi → DNA + Pi ui [0,0.1]
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We then usedMATLAB’s Global Search routine to min-
imize the objective function in Eq. (4). Global Search is
a method for finding the global minimum by starting a
local solver from multiple starting points that are chosen
according to a heuristic [35]. Therefore the total run-
ning time of our method depends on the tightness of
the intervals that we use as constraints for the unknown
parameters as well as on the starting points of the Global
Search procedure. The running times for one local solver
call (using the hybrid approach for computing moments)
were about 2 s (demean estimator) and 40 s (2-Step esti-
mator) for the gene expression model. For the exclusive
switch the average running time for a local solver call was
about 2 min (demean) and 10 min (2-Step). Note that
the total running time depends on the amount of local
solver calls carried out by Global Search, which varied
between 2 and 50. For all experiments we chose a sin-
gle initial point that is located far away from the true
values and allowed Global Search to choose 500 (poten-
tial) further starting points. Different initial points yielded
similar results except if the initial points is chosen close to
the true values (then the results are significantly better in
particular in the case of only few moment constraints).
The intervals that we used as constraints for the param-

eters are all listed in Tables 1 and 2.

Standard vs. hybrid moment-based analysis
In Fig. 2 we plot the results of a comparison between the
standard and the hybrid moment closure when it is per-
formed during the optimization procedure of the GMM
inference approach. We chose the exclusive switch model
for this since for this model the accuracy of the standard
approach is poor. As an estimator for F we used (6), which
is based on demeaning (demean). Results for the 2-step
procedure show similar differences when standard and
hybridmoment closure are compared.We fixed the degra-
dation rates to ensure that identification of p1 and p2 is
possible when the two protein populations are measured
at only a single observation time point. To simultaneously

identify all parameters (including p1 and p2) several obser-
vation time points are necessary (see Additional file 2).
The true values of the six unknown parameters are

plotted against the means and standard deviations of the
estimated values for a maximal moment order of 2 and
3, where for each of the six unknown parameters 50
estimations based on 10,000 samples each were used.
We see that the inaccurately approximated moments

of the standard approach lead to severe problems in the
inference approach. Nearly all parameters are estimated
more accurately when the hybrid moment closure is used.
For parameter b1 most of the optimization runs converged
to the upper limit of the given interval (0.1) when the stan-
dard approach was used. For the results in the sequel, we
only used the hybrid moment closure.

Two-step vs. demean approach
In Figs. 3 and 4 we plot results of the GMM approach
applied to the two example networks, where we compare
the performance of the two-step estimator in Eq. (5) with
the demean estimator in Eq. (6). We plot the true values of
the parameters against the estimated values, where 2-Step
I is the result of the first step of the two-step procedure
(with W = I) and 2-Step II that of the second step (with
W = F̂1 and F̂1 as defined in Eq. (5)).
For the results in Fig. 3 only one population (mRNA)

was observed at t = 100 where the initial conditions were
such that DNAOFF = 1, DNAON = 0 and 10 mRNA
molecules were present in the system. For three parame-
ters the means and standard deviations of the estimated
values are plotted, again based on 50 repetitions of the
inference procedure.
In the first row of Fig. 3 the accuracy of the estimation is

compared with respect to the number/order of moments
considered, where again for each of the 50 estimated val-
ues 10,000 samples were used. We see that if only one
moment is considered or if equal weights are used for
the first two moments, only a rough estimate is possi-
ble since identification is not possible. The accuracy is
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Fig. 2 Exclusive switch model: Comparison of estimations for 6 parameters (a–f) with the demean procedure for the standard moment closure and
hybrid moments
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Fig. 3 Gene expression model: Estimated parameters a, b and c for different numbers/orders of moments and 10,000 samples (a-c) and for different
sample sizes based on 3 moments (d-f). The inner plots show results on a more detailed scale (a and d)

markedly improved when the weights are chosen accord-
ing to the demean approach. Here, it is important to note
that for a maximal order of k = 2, in W we also con-
sider, besides the squared cost functions g1(θ)2 and g2(θ)2,
the mixed term g1(θ)g2(θ). This additional term signifi-
cantly improves the quality of the estimation such that it
is possible to achieve a good estimation of the parame-
ters with only the sample mean and the sample second
moment. To further investigate the positive influence of
the mixed term, we additionally plot results for the case
that only variances are estimated, referred to as ‘demean
(diagonal)’, i.e., the weight matrix is the inverse of a diago-
nal matrix that contains the variances estimated based on
the demean approach.
However, the variance of the estimator for a maximum

order of two is relatively high but decreases significantly
when also the third (and fourth) moment is considered.
Here, demean and the second step of the two-step pro-
cedure perform equally well and also demean (diagonal)
gives very good results. Opposed to this W = I (first
step of two-step procedure) gives poor results and a high
variance also if higher moments are considered.
In Table 3 we give an example for the (normalized)

matrix W as used for demean and 2-Step II. The two
methods choose nearly identical weights and the mean
has the highest weight. Then, the mixed cost function for
mean and secondmoment has a (negative) weight of about
2 · (−4.95) % since these moments are negatively corre-
lated (and so are the second and third moment). All terms

that involve the third moment have a very small weight as
their covariances are high.
It is important to note that also if the number ofmoment

constraints, k, is equal to the number of parameters, q,
2-Step I performs poor (see results for maximal order
k = 3 in the first row of Fig. 3). The reason is that in
this example identification is not possible if only three
terms are used due to functional dependencies between
the parameters of the first two reactions and due to
the fact that only at a single time point measurements
were made. If identification was possible and the com-
puted population moments were exact, the results should
be independent of the choice of W for the case that q
equals k.
Thus, the weights given by the estimators for F in (5)

and (6) substantially increase the accuracy of the results
and allow identification, because additional information
about the covariances between the Yr are used. More-
over, due to the off-diagonal entries ofW additional mixed
terms are part of the objective function.
In the second row in Fig. 3, we compare the accuracy

for different samples sizes where the first three moments
were considered. While 2-Step I does not show a system-
atic improvement when the number of samples increases,
we see for 2-Step II and demean not only significantly
improved estimates but also smaller variances. However,
in the case of few samples, demean gives in particular for
parameter a a high variance. This comes from the fact
that the corresponding estimator uses the sample mean
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Fig. 4 Exclusive switch model: Estimated parameters for maximal moment order 1–4 based on 10,000 independent samples observed at time
t = 100 and t = 200 (a–h) and at 1–4 different time points for the demean-based estimation of b2 (i). The inner plots show results on a more
detailed scale (c and d)

instead of the theoretical mean and therefore the weight
matrix is far from optimal if N is small.
In Fig. 4, a–h, we plot results for the exclusive switch

model where all eight parameters were estimated based
on observations of the two protein populations of P1 and
P2 at two time points. On the x-axis the maximal order

Table 3 Weight matrices for the two-step and demean
procedure with moment order 3 for the gene expression model

W

Two-step

1 -0.0495 0.0007

–0.0495 0.0025 –3.86e−5

0.0007 –3.86e−5 6.11e−7

Demean

1 –0.0494 0.0007

–0.0494 0.0025 –3.85e−5

0.0007 –3.85e−5 6.09e−7

The entries are normalized with respect to the weight for the mean and rounded
(the original weight matrices are both positive semi-definite)

of moments used is plotted. For the orders 1, 2, 3 and
4 there are in total 2, 5, 9 or 14 moments, respectively.
Again, 2-Step II and demean both give accurate results
from a maximal order of two on, whereas 2-Step I gives
poor results. In addition, the variance of the estimator
decreases with increasing maximal order. However, the
values for 2-Step II become slightly worse and have higher
variance for a maximal order of four since these moments
are not approximated very accurately. Also the accuracy
of the demean estimator does not improve when the max-
imum order is increased from three to four. Thus, the
cost functions of order four moments do not lead to any
significant improvement in this example and should be
excluded.

Further estimators
For our results we focused on the most popular GMM
estimators, that is, demean and two-step. However, we
also implemented two additional variants of estimators
that are frequently described in the GMM literature
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[14, 36]. One is the estimator that results from further
iterations of the two-step procedure (iterated GMM esti-
mator [36]). However, in our examples we did not see an
increase in accuracy after the second iteration. The second
approach is the continuously updating GMM estimator
[36], where we use in Eq. (4) the weight matrix W (θ) =
(F̂1(θ))−1 of Eq. (5) and the argument θ is not fixed for
the optimization but optimized simultaneously with the
argument of g(θ). The results for this approach did not
show increased accuracy, also when we used results of
the other estimators (e.g. demean) as starting points for
the optimization. Moreover, for large weight matrices, the
recomputation in each step of the optimization resulted in
longer running times.
Overall, our experiments show that for sufficiently large

N the demean estimator usually yields the best results,
while two-step performs better for small N. Moreover,
choosing three as the maximum order gave the best
results (accurate average value and small standard devia-
tions) for the examples that we considered.

Discussions
In the context of stochastic chemical kinetics, parame-
ter inference methods are either based on Markov chain
Monte Carlo schemes [37–40], on approximate Bayesian
computation techniques [41–43] or on maximum like-
lihood estimation using a direct approximation of the
likelihood [2, 44] or a simulation-based estimate [45, 46].
Maximum likelihood estimators are, in a sense, the most
informative estimates of unknown parameters [47] and
have desirable mathematical properties such as unbiased-
ness, efficiency, and normality. On the other hand, the
computational complexity ofmaximum likelihood estima-
tion is high as it requires a simulation-based or numer-
ical solution of the CME for many different parameter
instances. Since the applicability of these methods is lim-
ited, approaches based on moment closure [3, 23, 48–51]
or linear noise approximations [52–54] have been devel-
oped. An approximation of the likelihood of order-two
sample moments is maximized in [23, 48, 49, 51]. The
approach exploits that for large numbers of samples these
sample moments are asymptotically normally distributed.
The negative log-likelihood leads to an optimization
problem where the differences between the sample and
theoretical moments up to order two are weighted and
minimized as well. As opposed to the GMM, the weight
matrix in [48, 49] is estimated based on the theoretical
moments of the model up to order four and indepen-
dent of the samples while in the GMM approach this
matrix depends on the samples (and theoretical moments
up to order two). Moreover, the objective function con-
tains an additional summand, which is the logarithm of
the determinant of the estimated covariance matrix. In
[23], Bogomolov et al. insert sample instead of theoretical

moments in the derived formulas for the covariances
of moment conditions up to order two. A comparison
for the two examples that we consider in the previous
section yields that when the theoretical moments are
used to estimate covariances, similar to the continuously
updating GMM, optimization was slow and sometimes
failed to return the global optimum due to a much more
complex landscape of the objective function. When sam-
ple moments are considered as suggested in [23], the
results are similar to those of the GMM demean estima-
tor for a maximum order of two. In [51], only variances
are considered (weight matrix is diagonal) and estimated
based on the samples. Therefore, it does not exploit the
information contained in the mixed terms, which lead
to improved estimates in our examples (see results for
‘demean (diagonal)’ in Fig. 3).
A similar approach is used in [3] where the moment

equations are closed by a Gaussian approximation. The
parameter estimation is based on using a ML estimator
and a Markov chain Monte-Carlo approach. In [50] the
importance of higher moment orders when using least
square estimators is shown. Weights for terms that cor-
respond to different moments are chosen ad hoc and not
based on any statistical framework.
Here, we present results for the general method of

moments that assigns optimal weights to the different
moment conditions for an arbitrary maximal moment
order and number of species. We showed that trivial
weights (e.g. identity matrix) give results whose accu-
racy can be strongly increased when optimal weights are
chosen. In the very common case that functional depen-
dencies between parameters exist (e.g. degradation and
production of the same species) and identification is dif-
ficult, the GMM estimator allows to accurately identify
the parameters. Moreover, our results indicate that the
accuracy of the estimation increases when moments of
order higher than two are included. A general strategy
could be to start with k = q cost functions (equal to the
number of unknown parameters) and increase the maxi-
mal order until tests for over-identifying restrictions (e.g.
the Hansen test [13]) suggest that higher orders do not
lead to an improvement. In this way, cost functions that
do not improve the quality of the estimation, such as the
fourth order cost functions for the results in Fig. 4, can be
identified.
We also found that an accurate approximation of the

moments is crucial for the performance of the GMM
estimator. Thus, hybrid approaches such as the method
of conditional moments [12] or sophisticated closure
schemes (e.g. [23]) should be preferred. If all propensities
in the network are linear, the moment equations are exact
and model misspecification is not an issue. However, for
most networks the moments can only be approximated,
since the propensities are nonlinear, and hence the model
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is potentially misspecified. Again, statistical tests can be
used to detect model misspecification [32] and equations
for higher order moments may be added to the (condi-
tional) moment equations to improve the approximation
of the lower order moments.
Finally, we note that the GMM framework can also be

applied when the observed molecular counts are subject
to measurement errors. It is straight forward to extend the
GMM framework to the case of samples Y� + ε where the
error term ε is independent and normally distributed with
mean zero.

Conclusion
Parameter inference for stochastic models of cellular
processes demands huge computational resources. The
proposed approach based on the generalized method
of moments is based on an adjustment of the statis-
tical moments of the model and therefore does not
require the computation of likelihoods. This makes the
approach appealing for complex networks where stochas-
tic effects play an important role, since the integration of
the moment equations is typically fast compared to other
computations such as the computation of likelihoods. The
method does not make any assumptions about the distri-
bution of the process (e.g. Gaussian) and complements the
existing moment-based analysis approaches in a natural
way.
Here, we used a multistart gradient-based minimiza-

tion scheme, but the approach can be combined with any
global optimization method. We found that the weights
of the cost functions computed by the GMM estimator
yield clearly more accurate results than trivial (identi-
cal) weights. In particular, the variance of the estimator
decreases when moments of higher order are considered.
We focused on the estimation of reaction rate constants
and, as future work, we plan to investigate how well Hill
coefficients and initial conditions are estimated.
An important advantage of the proposed method is

that in the economics literature the properties of GMM
estimators have been investigated in detail over decades
and several variants and related statistical tests are avail-
able. We will also check how accurate approximations for
the variance of the GMM estimator are [32]. Since we
found that when moments of order higher than three are
included, the results become slightly worse, we will in
addition explore the usefulness of statistical tests for over-
identifying moment conditions. In this way, we can ensure
that only moments conditions are included that improve
the estimation.

Endnote
1 It is straightforward to adapt the approach that we

present in the sequel to the case that other unknown
continuous parameters have to be estimated.
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